


 
 
 
Practical Data Acquisition for  
Instrumentation and Control Systems 



Titles in the series 
 
Practical Cleanrooms: Technologies and Facilities (David Conway) 
 
Practical Data Acquisition for Instrumentation and Control Systems (John Park,  
Steve Mackay) 
 
Practical Data Communications for Instrumentation and Control (John Park, Steve 
Mackay, Edwin Wright) 
 
Practical Digital Signal Processing for Engineers and Technicians (Edmund Lai) 
 
Practical Electrical Network Automation and Communication Systems (Cobus 
Strauss) 
 
Practical Embedded Controllers (John Park) 
 
Practical Fiber Optics (David Bailey, Edwin Wright) 
 
Practical Industrial Data Networks: Design, Installation and Troubleshooting (Steve 
Mackay, Edwin Wright, John Park, Deon Reynders) 
 
Practical Industrial Safety, Risk Assessment and Shutdown Systems (Dave 
Macdonald) 
 
Practical Modern SCADA Protocols: DNP3, 60870.5 and Related Systems (Gordon 
Clarke, Deon Reynders) 
 
Practical Radio Engineering and Telemetry for Industry (David Bailey) 
 
Practical SCADA for Industry (David Bailey, Edwin Wright) 
 
Practical TCP/IP and Ethernet Networking (Deon Reynders, Edwin Wright) 
 
Practical Variable Speed Drives and Power Electronics (Malcolm Barnes) 



 
 

Practical Data Acquisition for 
Instrumentation and  
Control Systems 
 
 
 
John Park ASD, IDC Technologies, Perth, Australia 
 
Steve Mackay CPEng, BSc(ElecEng), BSc(Hons), MBA, IDC Technologies, 
Perth, Australia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Newnes 
An imprint of Elsevier  
Linacre House, Jordan Hill, Oxford OX2 8DP 
200 Wheeler Road, Burlington, MA 01803 
 
First published 2003 
 
Copyright  2003, IDC Technologies. All rights reserved 
 
No part of this publication may be reproduced in any material form (including  
photocopying or storing in any medium by electronic means and whether 
or not transiently or incidentally to some other use of this publication) without 
the written permission of the copyright holder except in accordance with the 
provisions of the Copyright, Designs and Patents Act 1988 or under the terms of 
a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, 
London, England W1T 4LP. Applications for the copyright holder's written  
permission to reproduce any part of this publication should be addressed  
to the publisher 
 
 
British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 
 
 
ISBN 07506 57960 
 
 
 
 
 
 
 
Typeset and Edited by Vivek Mehra, Mumbai, India  
(vivekmehra@tatanova.com) 
 
Printed and bound in Great Britain  
 

For information on all Newnes publications, visit 
our website at www.newnespress.com 



��������
 
In less than a decade, the PC has become the most widely used platform for data acquisition and control. The 
main reasons for the popularity of PC-based technology are low costs, flexibility and ease of use, and, last but 
not the least, performance. This solid and dependable trait is all thanks to the use of ‘off-the-shelf’ components. 
Data acquisition with a PC enables one to display, log and control a wide variety of real world signals such as 
pressure, flow, and temperature. This ability coupled with that of easy interface with various stand-alone 
instruments makes the systems ever more desirable. 

Until the advent of the PC, data acquisition and process monitoring were carried out by using dedicated data 
loggers, programmable logic controllers and or expensive proprietary computers. Today’s superb software-based 
operator interfaces make the PC an increasingly attractive option in these typical applications: 

• Laboratory data acquisition and control 
• Automatic test equipment (ATE) for inspection of components 
• Medical instrumentation and monitoring 
• Process control of plants and factories 
• Environmental monitoring and control 
• Machine vision and inspection 

 
The key to the effective application of PC-based data acquisition is the careful matching of real world 

requirements with appropriate hardware and software. Depending on your needs, monitoring data can be as 
simple as connecting a few cables to a plug-in board and running a menu-driven software package. At the other 
end of the spectrum, you could design customized sensing and conversion hardware, or perhaps develop 
application software to optimize a system. 

This book gives both the novice and the experienced user a solid grasp of the principles and practical 
implementation of interfacing the PC and stand-alone instruments with real world signals. The main objective of 
this book is to give you a thorough understanding of PC-based data acquisition systems and to enable you to 
design, specify, install, configure, and program data acquisition systems quickly and effectively. 

After reading this book, we believe you will be able to: 
• Demonstrate a sound knowledge of the fundamentals of data acquisition (with a focus 

on PC-based work) 
• Competently install and configure a simple data acquisition system 
• Choose and configure the correct software 
• Avoid the common pitfalls in designing a data acquisition system 

 
This book is intended for engineers and technicians who are: 

• Electronic engineers 
• Instrumentation and control engineers 
• Electrical engineers 
• Electrical technicians 
• Systems engineers 
• Scientists working in the data acquisition area 
• Process control engineers 
• System integrators 
• Design engineers 

 
A basic knowledge of electrical principles is useful in understanding the outlined concepts, but this book also 

focuses on the fundamentals; hence, understanding key concepts should not be too onerous. 
 
The structure of the book is as follows. 
 



���������xviii�

��������1	��	
���
�
��	��This chapter gives a brief overview of what is covered in the book with 
an outline of the essentials and main hardware and software components of data acquisition.�

������� 2	 �	������	������
������	�����This chapter reviews analog and digital inputs to the 
data acquisition system, through such techniques as temperature measurement and the use of strain gauges. 

������� 3	 ���	�����	��
��	�	���This chapter discusses how signals are conditioned before the 
data acquisition system can accurately acquire it. 

������� 4	�����������������
����������This chapter considers the various PC related issues 
to make it suitable for real time work such as software and hardware.�

������� 5	���
���	���
�����
���
��	���������This chapter assesses the wide range of 
methods of using plug-in data acquisition boards such as analog inputs/ outputs, digital inputs/outputs and 
counter/timer configurations.�

������� 6	 ���������
������
	���
��	���This chapter reviews the fundamental definitions 
and basic principles of digital serial data communications with a focus on RS-232 and RS-485. 

������� 7	 ���
���

����	���
�	�����	������������	
���������This chapter 
discusses the hardware and software configurations of stand-alone logger/controllers. 

������� 8	 �   �!""��
�	������This chapter reviews the IEE 488 standard with a reference to 
the IEEE 488.2 and SCPI approaches.�

������� 9	  
���	�
��	��������
���#�
�����This chapter briefly outlines the essentials of 
Ethernet and Fieldbus systems.�

������� 10	 ����
	�$��������������
��%&�'(��This chapter reviews the key features of 
the universal serial bus, which will have a major impact on PC-based data acquisition. 

��������11	 �)�������
���	��
����This chapter discusses how the PC can be used for process 
control applications.�

������� 12	 ������*����������This chapter discusses the essentials of the PCMCIA card as 
applied to data acquisition systems.�

�

 



Contents 
Preface                    xvii 

1 Introduction 1 
1.1 Definition of data acquisition and control 1 
1.2 Fundamentals of data acquisition 2 

1.2.1 Transducers and sensors 3 
1.2.2 Field wiring and communications cabling 3 
1.2.3 Signal conditioning 3 
1.2.4 Data acquisition hardware 4 
1.2.5 Data acquisition software 5 
1.2.6 Host computer 5 

1.3 Data acquisition and control system configuration 6 
1.3.1 Computer plug-in I/O 7 
1.3.2 Distributed I/O 8 
1.3.3 Stand-alone or distributed loggers/controllers 9 
1.3.4 IEEE 488 (GPIB) remote programmable instruments 11 

2 Analog and digital signals 13 
2.1 Classification of signals 13 

2.1.1 Digital signals binary signals 14 
2.1.2 Analog signals 15 

2.2 Sensors and transducers 17 
2.3 Transducer characteristics 17 
2.4 Resistance temperature detectors (RTDs) 19 

2.4.1 Characteristics of RTDs 19 
2.4.2 Linearity of RTDs 19 
2.4.3 Measurement circuits and considerations for RTDs 20 

2.5 Thermistors 22 
2.6 Thermocouples 22 

2.6.1 Reference junction compensation 23 
2.6.2 Isothermal block and compensation cables 24 
2.6.3 Thermocouple linearization 24 
2.6.4 Thermocouple types and standards 25 
2.6.5 Thermocouple construction 26 
2.6.6 Measurement errors 26 
2.6.7 Wiring configurations 27 

2.7 Strain gauges 28 
 
2.8 Wheatstone bridges 29 

2.8.1 General characteristics 29 
2.8.2 Quarter bridge configuration 30 



vi  Contents 

2.8.3 Half bridge configuration 31 
2.8.4 Full bridge configuration 32 
2.8.5 Wiring connections 32 
2.8.6 Temperature considerations 34 
2.8.7 Measurement errors 34 

3 Signal conditioning 36 
3.1 Introduction 36 
3.2 Types of signal conditioning 37 

3.2.1 Amplification 37 
3.2.2 Isolation 37 
3.2.3 Filtering 38 
3.2.4 Linearization 44 

3.3 Classes of signal conditioning 44 
3.3.1 Plug-in board signal conditioning 44 
3.3.2 Direct connect modular – two-wire transmitters 45 
3.3.3 Distributed I/O – digital transmitters 46 

3.4 Field wiring and signal measurement 48 
3.4.1 Grounded signal sources 49 
3.4.2 Floating signal sources 49 
3.4.3 Single-ended measurement 50 
3.4.4 Differential measurement 50 
3.4.5 Common mode voltages and CMRR 50 
3.4.6 Measuring grounded signal sources 52 
3.4.7 Ground loops 53 
3.4.8 Signal circuit isolation 53 
3.4.9 Measuring ungrounded signal sources 54 
3.4.10 System isolation 55 

3 5 Noise and interference 56 
3.5.1 Definition of noise and interference 56 
3.5.2 Sources and types of noise 56 

3.6 Minimizing noise 61 
3.6.1 Cable shielding and shield earthing 61 
3.6.2 Grounding cable shields 62 

3.7 Shielded and twisted-pair cable 64 
3.7.1 Twisted-pair cables 65 
3.7.2 Coaxial cables 66 

4 The PC for real time work 67 
 Introduction 67 
4.1 Operating systems 67 

4.1.1 DOS 68 
4.1.2 Microsoft Windows 3.1, 95, 98, 2000 and NT 69 
4.1.3 UNIX 71 

4.2 Operation of interrupts 72 



Contents  vii 

4.2.1 Hardware interrupts 73 
4.2.2 Non-maskable interrupts 73 
4.2.3 Maskable interrupts 73 
4.2.4 Programmable interrupt controller(s) 73 
4.2.5 Initialization required for interrupts 75 
4.2.6 I/O devices requesting interrupt service 75 
4.2.7 Interrupt service routines 76 
4.2.8 Sharing interrupts 77 

4.3 Operation of direct memory access (DMA) 77 
4.3.1 DMA controllers 78 
4.3.2 Initialization required for DMA control 79 
4.3.3 I/O devices requesting DMA 79 
4.3.4 Terminal count signal 80 
4.3.5 DMA modes 81 

4.4 Repeat string instructions (REP INSW) 83 
4.5 Polled data transfer 84 
4.6 Data transfer speed (polled I/O, interrupt I/O, DMA) 96 
4.7 Memory 97 

4.7.1 Base memory 97 
4.7.2 Expanded memory system (EMS) 98 
4.7.3 Extended memory (XMS) 99 
4.7.4 Expansion memory hardware 99 

4 8 Expansion bus standards (ISA, EISA, PCI, and PXI bus) 99 
4.8.1 ISA bus 99 
4.8.2 Microchannel bus 108 
4.8.3 EISA bus 108 
4.8.4 The PCI, compactPCI and PXI bus 109 

4.9 Serial communications 112 
4.9.1 Standard settings 112 
4.9.2 Intelligent  serial ports 112 

4.10 Interfacing techniques to the IBM PC 113 
4.10.1 Hardware considerations 114 
4.10.2 Address decoding 115 
4.10.3 Timing requirements 116 

5 Plug-in data acquisition boards 119 
5.1 Introduction 119 
 
5.2 A/D Boards 120 

5.2.1 Multiplexers 120 
5.2.2 Input signal amplifier 121 
5.2.3 Channel-gain arrays 123 
5.2.4 Sample and hold circuits 123 
5.2.5 A/D converters 124 
5.2.6 Memory (FIFO) buffer 136 



viii  Contents 

5.2.7 Timing circuitry 136 
5.2.8 Expansion bus interface 137 

5.3 Single ended vs differential signals 138 
5.3.1 Single ended inputs 138 
5.3.2 Pseudo-differential configuration 139 
5.3.3 Differential inputs 140 

5.4 Resolution, dynamic range and accuracy of A/D boards 141 
5.4.1 Dynamic range 141 
5.4.2 Resolution 141 
5.4.3 System accuracy 142 

5.5 Sampling rate and the Nyquist theorem 143 
5.5.1 Nyquist's theorem 143 
5.5.2 Aliasing 143 
5.5.3 Preventing aliasing 146 
5.5.4 Practical examples 148 

5.6 Sampling techniques 151 
5.6.1 Continuous channel scanning 151 
5.6.2 Simultaneous sampling 153 
5.6.3 Block mode operations 154 

5.7 Speed vs throughput 156 
5.8 D/A boards 157 

5.8.1 Digital to analog converters 158 
5.8.2 Parameters of D/A converters 160 
5.8.3 Functional characteristics of D/A boards 162 
5.8.4 Memory (FIFO) buffer 162 
5.8.5 Timing circuitry 163 
5.8.6 Output amplifier buffer 163 
5.8.7 Expansion bus interface 163 

5.9 Digital I/O boards 164 
5.10 Interfacing digital inputs/outputs 166 

5.10.1 Switch sensing 166 
5.10.2 AC/DC voltage sensing 167 
5.10.3 Driving an LED indicator 168 
5.10.4 Driving relays 168 

5.11 Counter/timer I/O boards 170 
 

6 Serial data communications 176 
6.1 Definitions and basic principles 176 

6.1.1 Transmission modes – simplex and duplex 177 
6.1.2 Coding of messages 178 
6.1.3 Format of data communications messages 181 
6.1.4 Data transmission speed 182 

6.2 RS-232-C interface standard 182 
6.2.1 Electrical signal characteristics 183 
6.2.2 Interface mechanical characteristics 186 



Contents  ix 

6.2.3 Functional description of the interchange circuits 187 
6.2.4 The sequence of operation of the EIA-232 interface 188 
6.2.5 Examples of RS-232 interfaces 190 
6.2.6 Main features of the RS-232 Interface Standard 190 

6.3 RS-485 interface standard 191 
6.3.1 RS-485 repeaters 192 

6.4 Comparison of the RS-232 and RS-485 standards 193 
6.5 The 20 mA current loop 194 
6.6 Serial interface converters 194 
6.7 Protocols 195 

6 7.1 Flow control protocols 196 
6.7.2 ASCII-based protocols 196 

6.8 Error detection 198 
6.8.1 Character redundancy checks 199 
6.8.2 Block redundancy checks 199 
6.8.3 Cyclic redundancy Checks 199 

6.9 Troubleshooting & testing serial data communication circuits 200 
6.9.1 The breakout box 201 
6.9.2 Null modem 201 
6.9.3 Loop back plug 202 
6.9.4 Protocol analyzer 202 
6.9.5 The PC as a protocol analyzer 202 

7  Distributed and stand-alone loggers/controllers 204 
7.1 Introduction 204 
7.2 Methods of operation 204 

7.2.1 Programming and logging data using PCMCIA cards 205 
7.2.2 Stand-alone operation 206 
7.2.3 Direct connection to the host PC 206 
7.2.4 Remote connection to the host PC 208 

7.3 Stand-alone logger/controller hardware 209 
7.3.1 Microprocessors 210 
7.3.2  Memory 210 
7.3.3 Real time clock 211 
7.3.4 Universal asynchronous receiver/transmitter (UART) 212 
7.3.5 Power supply 213 
7.3.6 Power management circuitry 214 
7.3.7 Analog inputs and digital I/O 215 
7.3.8 Expansion modules 217 

7.4 Communications hardware interface 217 
7.4.1 RS-232 interface 217 
7.4.2 RS-485 standard 219 
7.4.3 Communication bottlenecks and system performance 219 
7.4.4 Using Ethernet to connect data loggers 220 

7.5 Stand-alone logger/controller firmware 220 



x  Contents 

7.6 Stand-alone logger/controller software design 221 
7.6.1 ASCII based command formats 222 
7.6.2 ASCII based data formats 223 
7.6.3 Error reporting 223 
7.6.4 System commands 224 
7.6.5 Channel commands 224 
7.6.6 Schedules 226 
7.6.7 Alarms 229 
7.6.8 Data logging and retrieval 229 

7.7 Host software 230 
7.8 Considerations in using standalone logger/controllers 231 
7.9 Stand-alone logger/controllers vs internal systems 232 

7.9.1 Advantages 232 
7.9.2 Disadvantages 232 

8 IEEE 488 Standard 234 
8.1 Introduction 234 
8.2 Electrical and mechanical characteristics 235 
8.3 Physical connection configurations 236 
8.4 Device types 237 
8.5 Bus structure 238 

8.5.1 Data lines 239 
8.5.2 Interface management lines 239 
8.5.3 Handshake lines 240 

8.6 GPIB handshaking 240 
8.7 Device communication 241 

8.7.1 GPIB addressing 242 
8.7.2 Un-addressing devices 242 
8.7.3 Terminating data messages 242 
8.7.4 Sending and receiving data 243 

8.8 IEEE 488.2 243 
8.8.1  Requirements of IEEE 488.2 controllers 243 
8.8.2 IEEE 488.2 control sequences 244 
8.8.3 IEEE 488.2 protocols 244 
8.8.4 Device interface capabilities 246 
8.8.5 Status reporting model 246 
8.8.6  Common command set 247 

8.9 Standard commands for programmable instruments (SCPI) 248 
8.9.1 IEEE 488.2 common commands required by the SCPI 248 
8.9.2 SCPI required commands 249 
8.9.3 The SCPI programming command model 249 
8.9.4 SCPI hierarchical command structure 251 

 

9 Ethernet & LAN systems 252 



Contents  xi 

9.1 Ethernet and fieldbuses for data acquisition 252 
9.2 Physical layer 253 

9.2.1 10Base5 systems 253 
9.2.2  10Base2 systems 256 
9.2.3 10BaseT 257 
9.2.4  10BaseF 258 
9.2.5 100 Base-T (100 Base-TX, T4, FX,T2) 258 

9.3 Medium access control 260 
9.4 MAC frame format 263 
9.5 Difference between 802.3 and Ethernet 264 
9.6 Reducing collisions 265 
9.7 Ethernet design rules 265 

9.7.1 Length of the cable segment 265 
9.7.2 Maximum transceiver cable length 266 
9.7.3 Node placement rules 266 
9.7.4 Maximum transmission path 266 
9.7.5 Maximum network size 267 
9.7.6 Repeater rules 267 
9.7.7 Cable system grounding 268 

9.8 Fieldbuses 268 

10 The universal serial bus (USB) 271 
10.1 Introduction 271 
10.2 USB overall structure 271 

10.2.1 Topology 272 
10.2.2 Host hubs 273 
10.2.3 The connectors (Type A and B) 274 
10.2.4 Low-speed cables and high-speed cables 274 
10.2.5 External hubs 274 
10.2.6 USB devices 275 
10.2.7 Host hub controller hardware and driver 275 
10.2.8 USB software driver 276 
10.2.9 Device drivers 276 
10.2.10 Communication flow 276 

10.3 The physical layer 277 
10.3.1 Connectors 278 
10.3.2 Cables 278 
10.3.3 Signaling 279 
10.3.4 NRZI and bit stuffing 280 
10.3.5 Power distribution 280 

10.4 Datalink layer 281 
10.4.1 Transfer types 282 
10.4.2 Packets and frames 282 

10.5 Application layer (user layer) 283 
10.6 Conclusion 283 



xii  Contents 

10.6.1 Acknowledgements 284 

11  Specific techniques 285 
11.1 Open and closed loop control 285 

11.1.1 Definitions 285 
11.1.2 Fluid level closed loop control system 286 
11.1.3 PID control algorithms 286 
11.1.4 Transient performance – step response 288 
11.1.5 Deadband 289 
11.1.6 Output limiting 289 
11.1.7 Manual control – bumpless transfer 289 

11.2 Capturing high speed transient data 290 
11.2.1 A/D board operation and memory requirements 290 
11.2.2 Trigger modes (pre- and post-triggering) 290 
11.2.3 Trigger source and level 290 

12  The PCMCIA Card 292 
 Introduction 292 
12.1 History 293 
12.2 Features 293 

12.2.1 Size and Versatility 293 
12.2.2 16-Bit 294 
12.2.3 Direct memory access (DMA) 294 
12.2.4 Multi-functional and transparent 294 
12.2.5 Low voltage 294 
12.2.6 Plug and play 294 
12.2.7 Execute in place 295 
12.2.8 Problems 295 

12.3  Products 295 
12.3.1  Memory cards 295 
12.3.2  Disk drives 295 
12.3.3 Pagers 296 
12.3.4 Local area networks 296 
12.3.5 Modems 296 
12.3.6 Cellular telephone 296 
12.3.7 Data acquisition 296 
12.3.8 Digital multimeter 296 
12.3.9 GPS systems 297 
12.3.10 Pocket organizer 297 
12.3.11 Stand-alone products 297 
12.3.12 Full size computers 297 

12.4 Construction 297 
12.4.1 Size and types 298 
12.4.2 Extended types 298 

12.5  Hardware 298 
12.5.1 Power 299 



Contents  xiii 

12.5.2  Pin assignments 299 
12.5.3  Memory only cards 299 
12.5.4 I/O Cards 300 
12.5.5 I/O with direct memory access 300 
12.5.6 ATA interface (AT attachment) 301 
12.5.7 AIMS interface (auto-indexing mass storage) 302 

12.6 Software 302 
12.6.1 PC Card environment 303 

12.7 PC Card enablers and support software 303 
12.8 Future 304 

12.8.1 Magazine list and PCMCIA address 304 
12.8.2 Personal Computer Memory Card International Association 304 

Appendix A Glossary 305 
 

Appendix B IBM PC bus specifications 332 
B.I Hardware interrupts 332 
B.2 DMA channels 333 
B.3 8237 DMA channels 333 

Refresh (AT) 08F 334 
B.4 8259 interrupt controller 334 
B.5 8253 / 8254 counter/timer 336 
B.6 Bus signal information 344 
B.7 Card dimensions 346 
B.8 Centronics interface standard 347 

Appendix C  Review of the Intel 8255 PPI chip 349 
C.1 DIO0CTRL – control register of the 8255 351 
C.2 DIOA – port A of the 8255 (offset 0, read/write) 352 
C.3 DIOB – port B of the 8255 (offset 1, read/write) 353 
C.4 DIOC – port C of the 8255 (offset 2, read/write) 353 
C.5 Mode 0: simple I/O 355 
C.6 Mode 0 programming 355 
C.7 Mode 1: strobed I/O 355 
C.8 Mode 1 programming 356 
C.9 Mode 2: strobed bi-directional bus I/O 358 
C.10 Mode 2 programming 359 
C.11 Single-bit set/reset 361 
C.12 Mixed mode programming 361 



xiv  Contents 

C.13 8255-2 mode 1 and 2 timing diagrams 362 

Appendix D Review of the Intel 8254 timer-counter chip 364 
D.1 8254 architecture 364 

Count register (CR) 366 
Counting element (CE) 366 
Output latch (OL) 366 

D.2 8254 registers 366 
TCCTRL timer/counter control register (offset 3, write only) 366 
Configuration mode 367 
Read-back command 368 
Counter latch command 368 
TCO - timer/counter 0 (offset 0, read/write) 369 
TC1 - timer/counter 1 (offset 1, read/write) 369 
TC2 - timer/counter 2 (offset 2, read/write) 369 

D.3 Programming a counter 369 
Data transfer format 370 
Clock pulse input 370 
Gate input  370 

D.4 Read operations 370 
Simple read operation 371 
Counter latch command 371 
Read-back command 371 
Multiple counter latch 372 
Counter status information 372 
Latching both status and current count 373 

D.5 Counter mode definitions 373 
Mode 0: interrupt on terminal count 373 
Mode 1: hardware re-triggerable one-shot 374 
Mode 2: rate generator 374 
Mode 3: square wave generator 374 
Mode 4: software-triggered strobe 375 
Mode 5: hardware-triggered strobe 375 

D.6 Interrupt handling 376 

Appendix E Thermocouple tables 377 
Type B thermocouple 377 
Type BP thermocouple 378 
Type BN thermocouple 378 
Type E thermocouple 379 
Type J thermocouples 380 
Type JP thermocouples 380 
Type JN thermocouples 381 
Type K thermocouples 381 
Type KP thermocouple 382 
Type KN thermocouple 383 



Contents  xv 

Type R thermocouple 384 
Type S thermocouple 385 
Type T thermocouple 386 
Type TP thermocouple 387 
Type TN thermocouple 388 

Appendix F Number systems 389 
F.1 Introduction 389 
F.2 A generalized number system 389 
F.3 Binary numbers 390 

F.3.1 Conversion between decimal and binary numbers 391 
F.4 Hexadecimal numbers 392 

F.4.1 Conversion between binary and hexadecimal 393 
F.5 Octal 393 
F.6 Binary coded decimal 394 
F.7 Binary coded octal systems 394 
F.8 Internal representation of information 395 

F.8.1 Numeric data 395 
F.8.2 Alphanumeric data representation 396 

F.9 Binary arithmetic 396 

Appendix G GPIB (IEEE-488) mnemonics & their definitions 398 
 

Index  403 
 

 



1 

���������	��


In 1981, when IBM released its first personal computer or PC (as it became widely 
known) its open system design encouraged the development of a wide range of com-
patible add-on products by independent third party developers. In addition, the open sys-
tem design has encouraged the proliferation of IBM compatible PCs in the market place, 
resulting in a rapid increase in the speed and power of the PC, as competitors vie for a 
market edge. 

Accompanied by a significant drop in cost and a rapid expansion in software, which 
utilizes the increased power of the processor, the PC is now the most widely used plat-
form for digital signal processing, image processing, data acquisition, and industrial 
control and communication applications. In many applications, indeed for data acqui-
sition and process control, the PCs power and flexibility allow it to be configured in a 
number of ways, each with its own distinct advantages. The key to the effective use of the 
PC is the careful matching of the specific requirements of a particular data acquisition 
application to the appropriate hardware and software available. 

This chapter reviews the fundamental concepts of data acquisition and control systems 
and the various system configurations, which make use of the PC. 

���� ������	�
��
����	���
�����	�
������

�	�
��

Data acquisition is the process by which physical phenomena from the real world are 
transformed into electrical signals that are measured and converted into a digital format 
for processing, analysis, and storage by a computer. 

In a large majority of applications, the data acquisition (DAQ) system is designed not 
only to acquire data, but to act on it as well. In defining DAQ systems, it is therefore 
useful to extend this definition to include the control aspects of the total system. Control 
is the process by which digital control signals from the system hardware are convened to 
a signal format for use by control devices such as actuators and relays. These devices then 
control a system or process. Where a system is referred to as a data acquisition system or 
DAQ system, it is possible that it includes control functions as well. 



�
�����������	����
����
������������
���������������������������
���

�

���� ��������	����
����	���
�����	�
��

A data acquisition and control system, built around the power and flexibility of the PC, 
may consist of a wide variety of diverse hardware building blocks from different equip-
ment manufacturers. It is the task of the system integrator to bring together these 
individual components into a complete working system. 

The basic elements of a data acquisition system, as shown in the functional diagram of 
Figure 1.1, are as follows: 

• Sensors and transducers 
• Field wiring 
• Signal conditioning 
• Data acquisition hardware 
• PC (operating system) 
• Data acquisition software 
 
 

Filters
and

amplifiers

Filtered and
amplified signal

Host Computer

Data acquisition
software

Data acquisition
hardware12-bit resolution16 samples

per second

Physical
phenomena

Transducers Field wiring

Field wiring

Signal conditioning

Temperature
pressure
motion

Thermocouple

Strain gauge

Noisy
electrical

signal

 

Figure 1.1 
Functional diagram of a PC-based data acquisition system 



����������������

Each element of the total system is important for the accurate measurement and 
collection of data from the process or physical phenomena being monitored, and is dis-
cussed in the following sections. 

1.2.1 Transducers and sensors 
Transducers and sensors provide the actual interface between the real world and the data 
acquisition system by converting physical phenomena into electrical signals that the 
signal conditioning and/or data acquisition hardware can accept. 

Transducers available can perform almost any physical measurement and provide a 
corresponding electrical output. For example, thermocouples, resistive temperature de-
tectors (RTDs), thermistors, and IC sensors convert temperature into an analog signal, 
while flow meters produce digital pulse trains whose frequency depends on the speed of 
flow. 

Strain gauges and pressure transducers measure force and pressure respectively, while 
other types of transducers are available to measure linear and angular displacement, 
velocity and acceleration, light, chemical properties (e.g. CO concentration, pH), volt-
ages, currents, resistances or pulses. In each case, the electrical signals produced are pro-
portional to the physical quantity being measured according to some defined relationship. 

1.2.2 Field wiring and communications cabling 
Field wiring represents the physical connection from the transducers and sensors to the 
signal conditioning hardware and/or data acquisition hardware. When the signal 
conditioning and/or data acquisition hardware is remotely located from the PC, then the 
field wiring provides the physical link between these hardware elements and the host 
computer. If this physical link is an RS-232 or RS-485 communications interface, then 
this component of the field wiring is often referred to as communications cabling. 

Since field wiring and communications cabling often physically represents the largest 
component of the total system, it is most susceptible to the effects of external noise, 
especially in harsh industrial environments. The correct earthing and shielding of field 
wires and communications cabling is of paramount importance in reducing the effects of 
noise. This passive component of the data acquisition and control system is often over-
looked as an important integral component, resulting in an otherwise reliable system 
becoming inaccurate or unreliable due to incorrect wiring techniques. 

1.2.3 Signal conditioning 
Electrical signals generated by transducers often need to be converted to a form 
acceptable to the data acquisition hardware, particularly the A/D converter which con-
verts the signal data to the required digital format. In addition, many transducers require 
some form of excitation or bridge completion for proper and accurate operation.  

The principal tasks performed by signal conditioning are: 
• Filtering 
• Amplification 
• Linearization 
• Isolation 
• Excitation 

 

 





�����������	����
����
������������
���������������������������
���

�

Filtering 
In noisy environments, it is very difficult for very small signals received from sensors 
such as thermocouples and strain gauges (in the order of mV), to survive without the 
sensor data being compromised. Where the noise is of the same or greater order of 
magnitude than the required signal, the noise must first be filtered out. Signal con-
ditioning equipment often contains low pass filters designed to eliminate high frequency 
noise that can lead to inaccurate data. 

Amplification 
Having filtered the required input signal, it must be amplified to increase the resolution. 
The maximum resolution is obtained by amplifying the input signal so that the maximum 
voltage swing of the input signal equals the input range of the analog-to-digital converter 
(ADC), contained within the data acquisition hardware. 

Placing the amplifier as close to the sensor as physically possible reduces the effects of 
noise on the signal lines between the transducer and the data acquisition hardware. 

Linearization 
Many transducers, such as thermocouples, display a non-linear relationship to the 
physical quantity they are required to measure. The method of linearizing these input 
signals varies between signal conditioning products. For example, in the case of thermo-
couples, some products match the signal conditioning hardware to the type of thermo-
couple, providing hardware to amplify and linearize the signal at the same time. 

A cheaper, easier, and more flexible method is provided by signal conditioning 
products that perform the linearization of the input signal using software. 

Isolation 
Signal conditioning equipment can also be used to provide isolation of transducer signals 
from the computer where there is a possibility that high voltage transients may occur 
within the system being monitored, either due to electrostatic discharge or electrical 
failure. Isolation protects expensive computer equipment from damage and computer ope-
rators from injury. In addition, where common-mode voltage levels are high or there is a 
need for extremely low common mode leakage current, as for medical applications, 
isolation allows measurements to be accurately and safely obtained. 

Excitation 
Signal conditioning products also provide excitation for some transducers. For example: 
strain gauges, thermistors and RTDs, require external voltage or current excitation 
signals. 

1.2.4 Data acquisition hardware 
Data acquisition and control (DAQ) hardware can be defined as that component of a 
complete data acquisition and control system, which performs any of the following func-
tions: 

• The input, processing and conversion to digital format, using ADCs, of analog 
signal data measured from a system or process – the data is then transferred to 
a computer for display, storage and analysis 

• The input of digital signals, which contain information from a system or 
process 



����������������

• The processing, conversion to analog format, using DACs, of digital signals 
from the computer – the analog control signals are used for controlling a 
system or process 

• The output of digital control signals 
 

Data acquisition hardware is available in many forms from many different manufacturers. 
Plug-in expansion bus boards, which are plugged directly into the computer’s expansion 
bus, are a commonly utilized item of DAQ hardware. Other forms of DAQ hardware are 
intelligent stand-alone loggers and controllers, which can be monitored, controlled and 
configured from the computer via an RS-232 interface, and yet can be left to operate 
independently of the computer. 

Another commonly used item of DAQ hardware, especially in R&D and test en-
vironments, is the remote stand-alone instrument that can be configured and controlled by 
the computer, via the IEEE-488 communication interface. Several of the most common 
DAQ system configurations are discussed in the section Data acquisition and control 
system configuration p. 6 

1.2.5 Data acquisition software 
Data acquisition hardware does not work without software, because it is the software run-
ning on the computer that transforms the system into a complete data acquisition, ana-
lysis, display, and control system.  

Application software runs on the computer under an operating system that may be 
single-tasking (like DOS) or multitasking (like Windows, Unix, OS2), allowing more 
than one application to run simultaneously. 

The application software can be a full screen interactive panel, a dedicated input/output 
control program, a data logger, a communications handler, or a combination of all of 
these. 

There are three options available, with regard to the software required, to program any 
system hardware: 

• Program the registers of the data acquisition hardware directly 
• Utilize low-level driver software, usually provided with the hardware, to 

develop a software application for the specific tasks required 
• Utilize off-the-shelf application software – this can be application software, 

provided with the hardware itself, which performs all the tasks required for a 
particular application; alternatively, third party packages such as LabVIEW 
and Labtech Notebook provide a graphical interface for programming the 
tasks required of a particular item of hardware, as well as providing tools to 
analyze and display the data acquired 

1.2.6 Host computer 
The PC used in a data acquisition system can greatly affect the speeds at which data can 
be continuously and accurately acquired, processed, and stored for a particular app-
lication. Where high speed data acquisition is performed with a plug-in expansion board, 
the throughput provided by bus architectures, such as the PCI expansion bus, is higher 
than that delivered by the standard ISA or EISA expansion bus of the PC. 

Depending on the particular application, the microprocessor speed, hard disk access 
time, disk capacity and the types of data transfer available, can all have an impact on the 
speed at which the computer is able to continuously acquire data. All PCs, for example, 



�
�����������	����
����
������������
���������������������������
���

�

are capable of programmed I/O and interrupt driven data transfers. The use of Direct 
Memory Access (DMA), in which dedicated hardware is used to transfer data directly 
into the computer’s memory, greatly increases the system throughput and leaves the 
computer’s microprocessor free for other tasks. Where DMA or interrupt driven data 
transfers are required, the plug-in data acquisition board must be capable of performing 
these types of data transfer. 

In normal operation the data acquired, from a plug-in data acquisition board or other 
DAQ hardware (e.g. data logger), is stored directly to System Memory. Where the avail-
able system memory exceeds the amount of data to be acquired, data can be transferred to 
permanent storage, such as a hard disk, at any time. The speed at which the data is 
transferred to permanent storage does not affect the overall throughput of the data 
acquisition system. 

Where large amounts of data need to be acquired and stored at high speed, disk-
streaming can be used to continuously store data to hard disk. Disk-streaming utilizes a 
terminate-and-stay-resident (TSR) program to continuously transfer data acquired from a 
plug-in data acquisition board and temporarily held in system memory, to the hard disk. 
The limiting factors in the streaming process may be the hard disk access time and its 
storage capacity. Where the storage capacity is sufficient, the amount of contiguous 
(unfragmented) free hard disk space available to hold the data, may affect the system 
performance, since the maximum rate at which data can be streamed to the disk is re-
duced by the level of fragmentation. 

If real-time processing of the acquired data is needed, the performance of the com-
puter*s processor is paramount. A minimum requirement for high frequency signals 
acquired at high sampling rates would be a 32-bit processor with its accompanying co-
processor, or alternatively a dedicated plug-in processor. Low frequency signals, for 
which only a few samples are processed each second, would obviously not require the 
same level of processing power. A low-end PC would therefore be satisfactory. Clearly, 
the performance requirements of the host computer must be matched to the specific 
application. As with all aspects of a data acquisition system the choice of computer is a 
compromise between cost and the current and future requirements it must meet. 

One final aspect of the personal computer that should be considered is the type of 
operating system installed. This may be single-tasking (e.g. MS-DOS) or multitasking 
(e.g. Windows 2000). While the multitasking nature of Windows provides many 
advantages for a wide range of applications, its use in data acquisition is not as clear-cut. 
For example, the methods employed by Windows to manage memory can provide 
difficulties in the use of DMA. In addition, interrupt latencies introduced by the multi-
tasking nature of Windows can lead to problems when interrupt driven data transfers are 
used. Therefore, careful consideration must be given to the operating system and its 
performance in relation to the type of data acquisition hardware and the methods of data 
transfer, especially where high-speed data transfers are required. 

���� ��	���
�����	�
������

�	�
�����	���

�������	�
��

In many applications, and especially for data acquisition and process control, the power 
and flexibility of the PC, allows DAQ systems to be configured in a number of ways, 
each with its own distinct advantages. The key to the effective use of the PC is the careful 
matching of the specific requirements of a particular data acquisition application to the 
appropriate hardware and software available. 

The choice of hardware, and the system configuration, is largely dictated by the 
environment in which the system will operate (e.g. an R&D laboratory, a manufacturing 



����������������

plant floor or a remote field location). The number of sensors and actuators required and 
their physical location in relation to the host computer, the type of signal conditioning 
required, and the harshness of the environment, are key factors. 

Several of the most common system configurations are as follows: 
• Computer plug-in I/O 
• Distributed I/O 
• Stand-alone or distributed loggers and controllers 
• IEEE-488 instruments 

1.3.1 Computer plug-in I/O 
Plug-in I/O boards are plugged directly into the computers expansion bus, are generally 
compact, and also represent the fastest method of acquiring data to the computers 
memory and/or changing outputs. Along with these advantages, plug-in boards often 
represent the lowest cost alternative for a complete data acquisition and control system 
and are therefore a commonly utilized item of DAQ hardware. 

As shown in Figure 1.2, examples of plug-in I/O boards are, multiple analog input A/D 
boards, multiple analog output D/A boards, digital I/O boards, counter/timer boards, 
specialized controller boards (such as stepper/servo motor controllers) or specialized 
instrumentation boards (such as digital oscilloscopes). 

 




Figure 1.2 
Example of computer plug-in I/O boards 

Multi-function DAQ boards, containing A/D converters (ADCs), D/A converters (DACs), 
digital I/O ports and counter timer circuitry, perform all the functions of the equivalent 
individual specialized boards. Depending on the number of analog inputs/outputs and 
digital inputs/outputs required for a particular application, multi-function boards represent 
the most cost effective and flexible solution for DAQ systems. 



�
�����������	����
����
������������
���������������������������
���

�

Plug-in expansion boards are commonly used in applications where the computer is 
close to the sensors being measured or the actuators being controlled. Alternatively, they 
can be interfaced to remotely located transducers and actuators via signal conditioning 
modules known as two-wire transmitters. This system configuration is discussed in the 
following section on Distributed I/O. 

1.3.2 Distributed I/O 
Often sensors must be remotely located from the computer in which the processing and 
storage of the data takes place. This is especially true in industrial environments where 
sensors and actuators can be located in hostile environments over a wide area, possibly 
hundreds of meters away. In noisy environments, it is very difficult for very small signals 
received from sensors such as thermocouples and strain gauges (in the order of mV) to 
survive transmission over such long distances, especially in their raw form, without the 
quality of the sensor data being compromised. 

An alternative to running long and possibly expensive sensor wires, is the use of 
distributed I/O, which is available in the form of signal conditioning modules remotely 
located near the sensors to which they are interfaced. One module is required for each 
sensor used, allowing for high levels of modularity (single point to hundreds of points per 
location). While this can add reasonable expense to systems with large point counts, the 
benefits in terms of signal quality and accuracy may be worth it. 

One of the most commonly implemented forms of distributed I/O is the digital 
transmitter. These intelligent devices perform all required signal conditioning functions 
(amplification, filtering, isolation etc), contain a micro-controller and A/D converter, to 
perform the digital conversion of the signal within the module itself. Converted data is 
transmitted to the computer via an RS-232 or RS-485 communications interface. The use 
of RS-485 multi-drop networks, as shown in Figure 1.3, reduces the amount of cabling 
required, since each signal-conditioning module shares the same cable pair. Linking up to 
32 modules, communicating over distances up to 10 km, is possible when using the RS-
485 multi-drop network. However, since very few computers have built in support for the 
RS-485 standard, an RS-232 to RS-485 converter is required to allow communications 
between the computer and the remote modules. 

Host Computer

RS-485 Interface
Board

Digital
transmitter module

Relay

Digital
transmitter module

Relay

Power supplyDigital
transmitter module

Thermocouple

Digital
transmitter module

Strain gauge 


Figure 1.3 
Distributed I/O – digital transmitter modules 



����������������

1.3.3 Stand-alone or distributed loggers/controllers 
As well as providing the benefits of intelligent signal conditioning modules, and the 
ability to make decisions remotely, the use of stand-alone loggers/controllers increases 
system reliability.  This is because once programmed, the stand-alone logger can continue 
to operate, even when the host computer is not functional or connected.  In fact, stand-
alone loggers/controllers are specifically designed to operate independently of the host 
computer. This makes them especially useful for applications where the unit must be 
located in a remote or particularly hostile environment, (e.g. a remotely located weather 
station), or where the application does not allow continuous connection to a computer 
(e.g. controlling temperatures in a refrigerated truck). 

Stand-alone loggers/controllers are intelligent powerful and flexible devices, easily 
interfaced to a wide range of transducers, as well as providing digital inputs and digital 
control outputs for process control. 

The stand-alone logger/controller and logging data are programmed either by a serial 
communications interface or by using portable and reusable PCMCIA cards. The credit 
card size PCMCIA card is especially useful when the stand-alone logger/controller is 
remotely located, but requires an interface connected to the computer. This is shown in 
Figure 1.4. 

 

Computer Memory Card Interface

PCMCIA
Card

Remote Data LoggerStand-alone
logger / controller

Thermocouples Strain gauges Relays

 

Figure 1.4 
Using PCMCIA cards to program and log data from a stand-alone logger/controller 

The most commonly used serial communications link for direct connection between the 
computer and the stand-alone logger/controller is the RS-232 serial interface. This allows 
programming and data logging up to distances of 50 meters, as shown in Figure 1.5. 
Where the stand-alone unit must be located remotely, a portable PC can be taken to the 
remote location or communications performed via a telephone or radio communications 
network using modems, as shown in Figure 1.6. 
 



��
�����������	����
����
������������
���������������������������
���

�

Host Computer

50 m

RS-232 Communication Interface

Stand-alone
logger / controller

Thermocouples Strain gauges Relays 


Figure 1.5 
Direct connections to a stand-alone logger/controller via an RS-232 serial interface 

 

Host Computer

RS-232

RS-232

Telephone line

Radio communications link

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Modem

Modem Modem

Modem

 

Figure 1.6 
Remote connection to a stand-alone logger/controller via a telephone or radio communications network 

Where an application requires more than one logger/controller, each unit is connected 
within an RS-485 multi-drop network. A signal unit, deemed to be the host unit, can be 
connected directly to the host computer via the RS-232 serial interface, as shown in 
Figure 1.7, thus avoiding any requirement for an RS-232 to RS-485 serial interface card. 



�����������������

The same methods of programming or logging data from each logger/controller are 
available either via the serial communications network or via using portable and reusable 
memory cards. 

 

Host Computer

50 m

RS-232 Interface
Max cable length - 1000 m

RS-485 Interface

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

- + + -

+ -+ -

 

Figure 1.7 
Distributed logger/controller network 

1.3.4 IEEE-488 (GPIB) remote programmable instruments 
The communications standard now known as GPIB (General Purpose Interface Bus), was 
originally developed by Hewlett-Packard in 1965 as a digital interface for interconnecting 
and controlling their programmable test instruments. Originally referred to as the Hewlett 
Packard Interface Bus (HPIB), its speed, flexibility and usefulness in connecting instru-
ments in a laboratory environment led to its widespread acceptance, and finally to its 
adoption as a world standard (IEEE-488). Since then, it has undergone improvements 
(IEEE-488.2) and SCPI (Standard Commands for Programmable Instruments), to stan-
dardize how instruments and their controllers communicate and operate. 

Evolving from the need to collect data from a number of different stand-alone 
instruments in a laboratory environment, the GPIB is a high-speed parallel 
communications interface that allows the simultaneous connection of up to 15 devices or 
instruments on a short common parallel data communications bus. The most common 
configuration requires a GPIB controller, usually a plug-in board on the computer, which 
addresses each device on the bus and initiates the devices that will communicate to each 
other. The maximum speed of communications, the maximum length of cable, and the 
maximum cable distance between each device on the GPIB is dependent on the speed and 
processing power of the GPIB controller and the type of cabling used. Typical transfer 



��
�����������	����
����
������������
���������������������������
���

�

speeds are of the order of 1 Mbyte/s, while the maximum cable length at this data transfer 
rate is 20 m. This makes GPIB remote instruments most suited to the research laboratory 
or industrial test environment. 

Thousands of GPIB-compatible laboratory and industrial instruments, such as data 
loggers and recorders, digital voltmeters and oscilloscopes are available on the market for 
a wide range of applications and from a wide range of manufacturers. A typical system 
configuration is shown in Figure 1.8. 

 

Figure 1.8 
A typical GPIB system configuration 



2 

Analog and digital signals 

2.1 Classification of signals 
In the real world, physical phenomena, such as temperature and pressure, vary according 
to the laws of nature and exhibit properties that vary continuously in time; that is they are 
all analog time-varying signals. 

Transducers convert physical phenomena into electrical signals such as voltage and 
current for signal conditioning and measurement within DAQ systems. While the voltage 
or current output signal from transducers has some direct relationship with the physical 
phenomena they are designed to measure, it is not always clear how that information is 
contained within the output signal. For example, in the case of a flow meter, the output is 
a digital pulse train whose frequency is directly proportional to the rate of flow. While the 
change in the flow rate of a fluid may be varying slowly with time, the output signal is a 
digital pulse train that may vary quickly in time, dependent on the flow rate, and not on 
the speed of change in the flow rate. This is shown in Figure 2.1. 

 

 

Figure 2.1 
The rate of fluid flow and sign at output from a flow meter transducer 



14  Practical Data Acquisition for Instrumentation and Control Systems 

This leads us to the need for the classification of signals in DAQ systems, because it is 
the information contained within a signal that determines its classification, and therefore 
the method of signal measurement and or the type of hardware required to produce that 
signal. The classification of signals that may be encountered in data acquisition and con-
trol systems are defined in the sections below. 

2.1.1 Digital signals binary signals 
A digital, or binary, signal can have only two possible specified levels or states; an ‘on’ 
state, in which the signal is at its highest level, and an ‘off’ state, in which the signal is at 
its lowest level. This is shown in Figure 2.2. 

For example, the output voltage signal of a transistor-to-transistor logic (TTL) switch 
can only have two states – the value in the ‘on’ state is 5 V, while the value in the ‘off’ 
state is 0 V. Control devices, such as relays, and indicators such as LEDs, require digital 
output signals like those provided on digital I/O boards. 

 

 

Figure 2.2 
A binary digital signal 

Digital pulse trains 
A digital pulse train is a special type of digital signal, comprising a sequence of digital 
pulses as shown in Figure 2.3. Like all digital signals, a digital pulse can have only two 
defined levels or states. It is defined as a pulse because it remains in a non-quiescent state 
for a short period. A positive going pulse is one that makes a transition from its lowest 
logic state to its highest logic state, remains at the high logic state for a short duration, 
and then returns to the low logic state. A negative going pulse makes a transition from its 
highest logic state to the low logic state, remains there for a short duration, and then 
returns to the high logic state. The information conveyed in a digital pulse train is con-
veyed in the number of pulses that occur, the rate at which pulses occur and or the time 
between pulses. 

The output signals from a flow meter or from an optical encoder mounted on a rotating 
shaft are examples of a digital pulse train. It is also possible for a DAQ system to be 
required to output a digital pulse train as part of the control process. A stepper motor, for 
example, requires a series of digital pulses to control its speed and position. While input 
and output digital pulse trains can be practically measured or produced using digital I/O 
boards, counter/timer I/O boards are more effective in performing these functions. 



Analog and digital signals  15 
 

 

Figure 2.3 
Digital pulse train signal 

2.1.2 Analog signals 
Analog signals contain information within the variation in the magnitude of the signal 
with respect to time. The relevant information contained in the signal is dependent on 
whether the magnitude of the analog signal is varying slowly or quickly with respect to 
time, or if the signal is considered in the time or frequency domains. 

Analog DC signals 
Analog DC signals are static or slowly varying DC signals. The information conveyed in 
this type of signal is contained in the level or amplitude of the signal at a given instant in 
time, not in how this level varies with respect to time. This is shown in Figure 2.4. 

 

Figure 2.4 
An analog DC signal 
 

As the timing of the measurements made of slowly varying signals is not critical, the 
DAQ hardware would only be required to convert the signal level to a digital form for 
processing by the computer using an analog-to-digital converter (ADC). Low speed A/D 
boards would be capable of measuring this class of signal. Temperature and pressure 
monitoring are just two examples of slowly varying analog signals in which the DAQ 
system measures and returns a single value indicating the magnitude of the signal at a 
given instant in time. Such signals can be used as inputs to digital displays and gauges or 
processed to indicate a control-action (e.g. turn on a heater or open a valve) required for a 
particular process. 

For example, control hardware like a valve actuator, requires only a slowly varying ana-
log signal; the magnitude at a given point in time determining the control setting. DAQ 
hardware that could perform this task would only be required to convert the digital 



16  Practical Data Acquisition for Instrumentation and Control Systems 

control setting to an analog form using a digital-to-analog converter (DAC) at the re-
quired instant in time. A low-speed general purpose D/A board could perform this func-
tion. 

The most important parameters to consider for low speed A/D boards and D/A boards 
are the accuracy and resolution in which the slowly varying signal can be measured or 
output respectively. 

Analog AC signals 
The information conveyed in analog AC signals is contained not only in the level or 
amplitude of the signal at a given instant in time, but also how the amplitude varies with 
respect to time. The shape of the signal, its slope at a given point in time, the frequency, 
and location of signal peaks, can all provide information about the signal itself. An analog 
AC signal is shown in Figure 2.5. 
 

 

Figure 2.5 
An analog AC signal 
 

Since an analog AC signal may vary quite quickly with respect to time, the timing of 
measurements made of this type of signal may be critical. Hence, as well as converting 
the signal amplitude to a useful digital form for processing by the computer using an 
ADC, the DAQ hardware would be required to take the measurements close enough 
together to reproduce accurately the shape, and therefore the information, contained in the 
signal. Further to this, the information extracted from the signal may vary depending on 
when the measurement of the signal started and ended. DAQ hardware used to measure 
these signals would require an ADC, a sample clock, to time the occurrence of each A/D 
conversion, and a trigger to start and/or stop the measurements at the proper time, 
according to some external event or condition, so that the relevant portion of the signal 
can be obtained. A high-speed A/D board would be capable of performing these 
functions. 

As all time varying signals can be represented by the summation of a series of 
sinusoidal waveforms of different magnitudes and frequencies, another useful way of 
extracting information is through the frequency spectrum of a signal. This indicates the 
magnitudes and frequencies of each of the sinusoidal components that comprise the signal 
rather than the time-based characteristics of the signal (i.e. shape, slope at a given point 
etc). This is shown in Figure 2.6. 



Analog and digital signals  17 
 

 

Figure 2.6 
An analog AC signal in the frequency domain 
 

Analysis in the frequency domain allows for easier detection and extraction of the wan-
ted signal by filtering out unwanted noise components having frequencies much higher 
than the desired signal. The digital signal processing (DSP) required to convert the time-
measured signal into frequency information and possibly perform analysis on the 
frequency spectrum, can be achieved with software or with special DSP hardware. 

2.2 Sensors and transducers 
A transducer is a device that converts one form of energy or physical quantity into 
another, in accordance with some defined relationship. Where a transducer is the sensing 
element that responds directly to the physical quantity to be measured and forms part of 
an instrumentation or control system, then the transducer is often referred to as a sensor. 

In data acquisition systems, transducers sense physical phenomena and provide elec-
trical signals that the system can accept. For example, thermocouples, resistive tem-
perature detectors (RTDs), thermistors, and IC sensors convert temperature into an analog 
voltage signal, while flow transducers produce digital pulse trains whose frequency 
depends on the speed of flow. 

Two defined categories of transducer exist: 
• Active transducers convert non-electrical energy into an electrical output 

signal. They do not require external excitation to operate. Thermocouples are 
an example of an active transducer. 

• Passive transducers change an electrical network value, such as resistance, 
inductance or capacitance, according to changes in the physical quantity being 
measured. Strain gauges (resistive change to stress) and LVDTs (inductance 
change to displacement) are two examples of this. To be able to detect such 
changes, passive devices require external excitation. 

2.3 Transducer characteristics 
Transducers are classified according to the physical quantity they measure (e.g. 
temperature, force etc).   



18  Practical Data Acquisition for Instrumentation and Control Systems 

Beyond the obvious selection of the type of transducer required to measure a particular 
physical quantity and any cost considerations, the characteristics that are most important 
in determining a transducer’s applicability for a given application are as follows: 

• Accuracy 
• Sensitivity 
• Repeatability 
• Range 

Accuracy 
When a range of measurements is made of any process it is essential to know the 
accuracy of the readings and whether the same is maintained over the entire range or not. 
The accuracy of a transducer describes how close a measurement is to the actual value of 
the process variable being measured. It describes the maximum error that can be expected 
from a measurement taken at any point within the operating range of the transducer. 
Manufacturers usually provide the accuracy of a transducer as a percentage error over the 
operating range of the transducer, such as ± 1% between 20ºC and 120ºC, or as a rating 
(i.e. ± 1ºC) over the operating range of the transducer. 

Sensitivity 
Sensitivity is defined as the amount of change in the output signal from a transducer to a 
specified change in the input variable being measured. Highly sensitive devices, such as 
thermistors, may change resistance by as much as 5% per ºC, while devices with low 
sensitivity, such as thermocouples, may produce an output voltage that changes by only 
5µV per ºC. 

Repeatability 
If two or more measurements are made of a process variable at the identical state, a 
transducer's repeatability indicates how close the repeated measurements will be. The 
ability to generate almost identical output responses to the same physical input 
throughout its working life is an indication of the transducer’s reliability and is usually 
related to the cost of the transducer. 

Range 
A transducer is usually constructed to operate within a specified range. The range is 
defined as the minimum and maximum measurable values of a process variable between 
which the defined limits of all other specified transducer characteristics (i.e. sensitivity, 
accuracy etc) are met. A thermocouple, for example, could well work outside its specified 
operating range of 0ºC to 500ºC, however its sensitivity outside this range may be too 
small to produce accurate or repeatable measurements. 

Several variables affect the accuracy, sensitivity, and repeatability of the measurements 
being made. 

In the process of measuring a physical quantity, the transducer disturbs the system 
being monitored. As an example, a temperature measuring transducer lowers the 
temperature of the system being monitored, while energy is used to heat its own mass. 

Transducers are responsive to unwanted noise in the same way that a record player’s 
magnetic cartridge is sensitive to the alternating magnetic field of the mains transformer 
(giving rise to ‘mains hum’). 



Analog and digital signals  19 
 

Some transducers are subject to excitation signals that alter their response to the input 
physical quantity being measured. As an example, an RTD’s excitation current can result 
in self-heating of the device, thereby changing its resistance. 

2.4 Resistance temperature detectors (RTDs) 

2.4.1 Characteristics of RTDs 
Resistance temperature detectors (RTDs) are temperature sensors generally made from a 
pure (or lightly doped) metal whose resistance increases with increasing temperature 
(positive resistance temperature coefficient). 

Most RTD devices are either wire wound or metal film. Wire wound devices are essen-
tially a length of wire wound on a neutral core and housed in a protective sleeve. Metal 
film RTDs are devices in which the resistive element is laid down on a ceramic substrate 
as a zig-zag metallic track a few micrometers thick. Laser trimming of the metal track 
precisely controls the resistance. The large reduction in size with increased resistance that 
this construction allows, gives a much lower thermal inertia, resulting in faster response 
and good sensitivity. These devices generally cost less than wire wound RTDs. 

The most popular RTD is the platinum film PT100 (DIN 43760 Standard), with a 
nominal resistance of 100 Ω ± 0.1 Ω at 0ºC. Platinum is usually used for RTDs because 
of its stability over a wide temperature range (–270ºC to 650ºC) and its fairly linear 
resistance characteristics. Tungsten is sometimes used in very high temperature app-
lications. High resistance (1000 Ω) nickel RTDs are also available. If the RTD element is 
not mechanically stressed (this also changes the resistance of a conductor), and is not 
contaminated by impurities, the devices are stable over a long period, reliable and 
accurate. 

2.4.2 Linearity of RTDs 
In comparison to other temperature measuring devices such as thermocouples and 
thermistors, the change in resistance of an RTD with respect to temperature is relatively 
linear over a wide temperature range, exhibiting only a very slight curve over the working 
temperature range. Although a more accurate relationship can be calculated using curve 
fitting – the Callendar-Van Dusen polynomial equations are often used – it is not usually 
required. Since the error introduced by approximating the relationship between resistance 
and temperature as linear is not significant, manufacturers commonly define the tem-
perature coefficient of RTDs, known as alpha (α), by the expression: 
 

 
  

100 
) ( 

×R0 
R0 R100 Alpha − 

= α   Ω / Ω / °C 

Where: 
 
 R0 = Resistance at 0ºC 
R100 = Resistance at 100ºC 

 
This represents the change in the resistance of the RTD from 0ºC to 100ºC, divided by 

the resistance at 0ºC, divided by 100ºC. 
From the expression of alpha (α) it is easily derived that the resistance RT of an RTD, at 

temperature T can be found from the expression: 
RT=R0(l+αT) 



20  Practical Data Acquisition for Instrumentation and Control Systems 

Where: 
R0 = Resistance at 0ºC 
 

For example, a PT100 (DIN 43760 Standard), with nominal resistance of 100 Ω ± 0.1 Ω 
at 0ºC has an alpha (α) of 0.00385 Ω / Ω / ºC. Its resistance at 100ºC will therefore be 
138.5 Ω. 

2.4.3 Measurement circuits and considerations for RTDs  

Two-wire RTD measurement 
Since the RTD is a passive resistive device, it requires an excitation current to produce a 
measurable voltage across it. Figure 2.7 shows a two-wire RTD excited by a constant 
current source, IEX and connected to a measuring device. 
 
 

 

Figure 2.7 
Two-wire RTD measurement 
 

Any resistance, RL, in the lead wires between the measuring device and the RTD will 
cause a voltage drop on the leads equal to (RL × IEX) volts. The voltage drop on the wire 
leads will add to the voltage drop across the RTD, and depending on the value of the lead 
wire resistance compared to the resistance of the RTD, may result in a significant error in 
the calculated temperature. 

Consider an example where the lead resistance of each wire is 0.5 Ω. For a 100 ω RTD 
with an alpha (α) of 0.385 Ω / °C, the lead resistance corresponds to a temperature error 
of 2.6ºC (l .0 Ω / 0.385 Ω / ºC). 

This indicates that if voltage measurements are made using the same two wires which 
carry the excitation current, the resistance of the RTD must be large enough, or the lead 
wire resistances small enough, that voltage drops due to the lead wire resistances are 
negligible. This is usually true where the leads are no longer than a few (<3) meters for a 
100 Ω RTD. 



Analog and digital signals  21 
 

Four-wire RTD measurement 
A better method of excitation and measurement, especially when the wire lead lengths are 
greater than a few meters in length, is the four-wire RTD configuration shown in Figure 
2.8. 

 

Figure 2.8 
Four-wire RTD measurements 

 
RTDs are commonly packaged with four (4) leads, two current leads to provide the 

excitation current for the device, and two voltage leads for measurement of the voltage 
developed. This configuration eliminates the voltage drops caused by excitation current 
through the lead resistances (RL1 and RL4). Since negligible current flows in the voltage 
lead resistances, (RL2 and RL3) only the voltage drop across the resistance RT of the RTD 
is measured. 

Three-wire RTD measurement 
A reduction in cost is possible with the elimination of one of the wire leads.  In the three-
wire configuration shown in Figure 2.9, only one lead RL1 adds an error to the RTD 
voltage measured. 

 

Figure 2.9 
Three-wire RTD measurements 

Self-heating 
Another consequence of current excitation of the RTD is the possible effect that internal 
heating of the device may have on the accuracy of the actual temperature measurements 



22  Practical Data Acquisition for Instrumentation and Control Systems 

being made. The degree of self-heating depends on the medium in which the RTD is 
being used, and is typically specified as the rise in temperature for each mW of power 
dissipated for a given medium (i.e. still air). 

For a PT100 RTD device, the self-heating coefficient is 0.2ºC/mW in still air, although 
this will vary depending on the construction of the RTD housing and its thermal 
properties. With an excitation current of 0.75 mA the power to be dissipated by the device 
is 56 µW [(0.75 × 10–3)2 × 100] corresponding to a rise in the temperature of the device 
due to self-heating of 0.011ºC (56 µW × 0.2). 

Inaccuracies in the temperature measurement due to self-heating problems, can be 
greatly reduced by: 

• Minimizing the excitation power 
• Exciting the RTDs only when a measurement is taken 
• Calibrating out steady state errors 

2.5 Thermistors 
A cheap form of temperature sensing is provided by the thermistor, which is a thermally 
sensitive semiconductor resistor formed from the oxides of various metals. The type and 
composition of the semiconductor oxides used (i.e. manganese, nickel, cobalt etc) de-
pend on the resistance value and temperature coefficient required. 

More commonly used thermistor devices exhibit a negative temperature coefficient and 
have a high degree of sensitivity to small changes in temperature, typically 4% / ºC. 

Their accuracy is typically ten times better than thermocouples but not as accurate as 
RTDs. Thermistors are non-linear devices and directly useful over typical temperature 
ranges of –80ºC up to 250ºC. With regard to this, modern microprocessor based systems 
(either PCs or stand-alone data loggers) can be used to relieve some of the limitations 
caused by non-linearities, by modeling the non-linearities with quadratic equations. 

Thermistors exhibit a high resistance, typically 3 kΩ, 5 kΩ, 6 kΩ and 10 kΩ at 25ºC, 
although values as low as 100 Ω are available. High resistance means that the lead 
resistances of wires used to excite thermistors are usually negligible, requiring only two 
wire measurement schemes. 

One of the attractions of thermistors is the wide range of shapes in the form of beads, 
discs, rods and probes that can be easily manufactured. Their small size means they have 
a fast thermal response, but can be quite fragile compared to RTDs that are more robust. 

Just as excitation currents for RTDs can cause self-heating problems, this is even more 
the case for thermistors due to the higher device resistance values.   

Self-heating problems can be greatly reduced by: 
• Minimizing the excitation power 
• Exciting the RTDs only when a measurement is taken 
• Calibrating out steady state errors. Some authorities state that the temperature 

rise, in ºC, due to self-heating can be calculated by dividing the proposed 
internal power dissipation by 8 mW. 

2.6 Thermocouples 
A thermocouple is two wires of dissimilar metals that are electrically connected at one 
end (measurement junction) and thermally connected at the other end (the reference 
junction). This is shown in Figure 2.10 below. 
 



Analog and digital signals  23 
 

T

T
V

V

V

Reference (cold)
Junction at T

(Isothermal Block)
2

Metal A

Metal B Measuring 
(hot)

Junction at T1

1

2

B

A  

Figure 2.10 
Thermocouple measurement 
 

Its operation is based on the principle that temperature gradients in electrical conductors 
generate voltages in the region of the gradient. 

Different conductors will generate different voltages for the same temperature gradient.  
Therefore, a small voltage, equal to the difference between the voltages generated by the 
thermal gradient in each of the wires (V = VA – VB), can then be measured at the reference 
junction. 

Note that this voltage is produced by the temperature gradient along the wires and not 
by the junction itself. As long as the conductors are uniform along their lengths, then the 
output voltage is only affected by the temperature difference between the measurement 
(hot) junction and tile reference (cold) junction, and not the temperature distribution 
along the conductor between them. 

2.6.1 Reference junction compensation 
Calculations determining the temperature corresponding to a given measured voltage of a 
thermocouple assume that this voltage corresponds to a temperature gradient that is re-
ferenced to 0ºC. Clearly, where the reference junction is allowed to follow ambient temp-
erature, this is not the case. 

Where ambient temperature variations of the reference junction would cause significant 
errors in the temperature calculation from the voltage output of the thermocouple, two 
methods of reference junction compensation exist: 

Maintain the reference junction at a constant known temperature such as an ice bath 
(0ºC). This is where the term ‘cold junction’ was originally derived. 

Measure the temperature of the reference junction and add the reference junction 
voltage. The reference junction voltage is equal to the voltage, which would be generated 
by the same thermocouple if its measurement junction was at ambient temperature and its 
reference junction was at 0ºC. 

Obviously the second option is far easier to implement and has led to the design of 
many cold junction compensation circuits. The necessary voltage correction can be 
carried out with software, hardware, or a combination of both. 

Hardware compensation 
Hardware compensation requires dedicated circuitry to generate a compensation voltage 
according to the ambient temperature of the isothermal block, and add this voltage to the 
voltage measured at the measuring junction. As the voltage vs temperature relationship 



24  Practical Data Acquisition for Instrumentation and Control Systems 

varies between thermocouples, each thermocouple type must have a separate 
compensation circuit that operates over the required working range of ambient 
temperatures. This makes hardware compensation circuitry for thermocouples complex 
and expensive, and by their nature, prone to inherent errors. 

Software compensation 
Software compensation requires only that an additional direct reading temperature sensor, 
such as a thermistor or silicon sensor, be used to measure the isothermal block 
temperature of the reference junction. Software is then used to calculate the equivalent 
reference junction voltage, either by polynomial equations, or look-up tables, for the 
thermocouple type being used. Once calculated, this value is added to the measured out-
put voltage from the thermocouple. The resulting voltage is converted back to a tem-
perature, representing the true thermocouple temperature. 

Note: It is not always the case that changes in the ambient temperature lead to 
significant errors in determining the thermocouple temperature, as shown by the example 
below. 

Example: Consider a type S thermocouple used to measure temperatures of 1500ºC 
within a furnace. The ambient temperature of the reference junction is 25ºC ± 15ºC. 
Since the sensitivity of the thermocouple is 12 µV / ºC at 1500ºC and a change from 10ºC 
to 40ºC at the reference junction produces a change of 180 µV in the net output voltage, 
the equivalent change in temperature at the measuring junction is 15ºC. 

This represents at most a 1% error of 1500ºC over the operating temperature range of 
the reference junction. In this case, the error introduced by changes in the reference 
junction temperature might be ignored. 

2.6.2 Isothermal block and compensation cables 
Quite often thermocouples, especially those used in industrial applications, are at a 
considerable distance from the measuring points and require extension leads and 
connectors. Conventional copper wire and connectors cannot be used for the extensions 
as unwanted thermocouples are created. Wire and connectors of the same material as the 
thermocouple must be used. The use of extension cables made of similar but less pure 
metals than the actual thermocouple, is an economical way of extending the thermocouple 
circuit. 

This wire, though considerably cheaper, has a limited temperature range of typically 
0ºC to 100ºC and must not be used where temperatures exceed this range. 

Where inline connectors are used these must also be of the same material as the ther-
mocouples. Color-coded and polarized connectors (to prevent alloy reversal) are 
available. 

References junctions are held at the same temperature by an ‘isothermal block’, a 
physical arrangement that ensures good thermal conductivity between the ends of the 
thermocouple cable. It is advisable to protect the isothermal block from rapid ambient 
temperature changes. 

2.6.3 Thermocouple linearization 
In addition to requiring cold-junction compensation, thermocouples are also highly non-
linear, and thus require linearization. For example, a J type thermocouple has a thermal 
coefficient of 22 µV per ºC at – 200ºC, but 64 µV per ºC at 750ºC. 

For most purposes, some form of software-based linearization is used. Two techniques 
of linearization are common: 



Analog and digital signals  25 
 

Look-up tables: With this technique, a table of temperatures versus all possible 
measured voltages is stored, and the appropriate temperature is obtained via an indexing 
operation. This is very fast, but requires large amounts of memory. Cold-junction 
compensation is also difficult to handle. 

Polynomial compensation: Using this technique, polynomial approximations are used to 
obtain temperature from voltage. The number of polynomial terms used depends on the 
temperature range, and the type of thermocouple. For example, type J thermocouples can 
be approximated to 0.1º over 0 to 760ºC with a fifth-order polynomial, but an F-type 
thermocouple requires a ninth-order equation for only 0.5º accuracy. 

For wide temperature ranges, several lower-order polynomials over narrower ranges are 
often used. For example, there are thermocouple board drivers that use three eighth-order 
polynomials for voltage-to-temperature conversions. The range of each equation is opti-
mized for each type of thermocouple. In addition, a second-order polynomial is used to 
convert the cold-junction temperature to a thermocouple voltage for compensation. 

The use of a second-order polynomial is only possible because the terminal block tem-
perature varies from 0º to 70ºC. 

2.6.4 Thermocouple types and standards 
Thermocouple standards specify the voltage vs temperature characteristics, color codes, 
error limits and composition of standard thermocouples. There are five standards for ther-
mocouples in general use, namely NBS/ANSI (American), BS (British), DIN (German), 
JIS (Japanese), and NF (French). 

Eight main types of thermocouples are general used in industry. These are divided into 
two main groups: base metal thermocouples (types J, K, N, E & T) and noble metal 
thermocouples (types R, S & B). Their composition and operating temperature range 
according to the NBS standard is shown in Table 2.1. 

In addition, there are several high temperature tungsten-based thermocouples (types G, 
C & D), which allow temperature measurements between 0ºC and 2320ºC. As these 
thermocouples do not follow any official standards, manufacturers’ data sheets should be 
consulted to ensure correct use. 
 
����� ���	
	��� ��
�
	��� �������
�����

���
�����

B Pt, 30% Rh Pt, 6% Rh +300 to 1700 
C W, 5% Re W, 26% Rh 0 to 2320 
D W, 3% Re W, 25% Re 0 to 2320 
E Ni, 10% Cr Cu, 45% Ni –200 to 900 
G W W, 26% Re 0 to 2320 
J Fe Cu, 45% Ni –200 to 750 
K Ni, 10% Cr Ni, 2% Mn, 2% Al –200 to 1250 
N Ni, 14% Cr, 1% Si Ni, 4% Si, 0.1% Mg –200 to 1350 
R Pt, 13% Rh Pt 0 to 1450 
S Pt, l0% Rh Pt 0 to 1450 
T Cu Cu, 45% Ni –200 to 350 

Table 2.1 
Thermocouple specifications (NBS Standard) 

 



26  Practical Data Acquisition for Instrumentation and Control Systems 

2.6.5 Thermocouple construction 
In addition to thermocouple type, thermocouple style is another important factor in per-
formance. Three basic styles are available, as illustrated in Figure 2.11(a). 

The exposed, or bead, junction thermocouple has its junction exposed to air. Thermo-
couples with exposed junctions (Figure 2.11(b)) are generally used to measure gas 
temperature, and they have an extremely fast response time. 

In ungrounded-junction thermocouples (Figure 2.11(c)), a conductive sheath protects 
the thermocouple junction. This sheath is electrically isolated from the thermocouple 
itself. This con-struction is particularly useful where high levels of electrical noise are 
present. The ungrounded junction thermocouple has the disadvantage that response time 
is long, typi-cally of the order of several seconds. Problems can also arise from thermal 
shunting, re-sulting in the junction being at a different temperature to the sheath. 

In grounded-junction thermocouples, a conductive sheath also protects the thermo-
couple junction, and the sheath is electrically connected to the thermocouple junction. 
This has the advantage that response time is faster than for the ungrounded-junction type, 
and thermal shunting effects are minimized, while still maintaining good noise immunity. 
A disadvantage is the susceptibility to ground loop problems, which are particularly 
difficult to solve in thermocouples, due to low voltages. 

 

 

     (a)               (b)            (c) 

Figure 2.11 
Thermocouple styles 

2.6.6 Measurement errors 
When making temperature measurements using thermocouples there are several possible 
sources of error, in addition to any errors that occur due to the accuracy of the measuring 
equipment.  

These are: 
• Reference junction isothermal characteristics and reference junction 

temperature sensor accuracy – the most significant sources of error. 
Temperature gradients between the temperature sensor and the terminals to 
which the thermocouples are connected result in errors of the magnitude of 
the temperature difference. Added to this is the magnitude of any inherent 
inaccuracies in the temperature sensor used to measure the ambient 
temperature. 

• Induced electrical noise. Due to the low signal voltage levels from 
thermocouples, typically in the order of µV/ºC, temperature measurements 



Analog and digital signals  27 
 

using thermocouples are susceptible to the effects of noise. This is especially 
true where long thermocouple cables are used in the measurement process. 
The effects of noise can be reduced by amplifying the low-level thermocouple 
voltages as close to the source as possible, and where this is not possible, by 
using twisted, shielded cables. 

• Quality of the thermocouple wire. Where inhomogeneities occur in the 
thermocouple manufacturing process, the quality of thermocouple wire and its 
standard voltage temperature characteristics may vary. 

• Linearization errors occur because polynomials are only approximations of 
the true thermocouple voltage output. 

2.6.7 Wiring configurations 
As the voltage levels from thermocouples are very small, typically in the order of µV/ºC, 
temperature measurements using thermocouples are susceptible to the effects of noise. 
Three wiring configurations are shown in the following figures: 

�

Figure 2.12 
Thermocouple with no shielding 
 
 

�

Figure 2.13 
Thermocouple with thermocouple sheath and ungrounded junction 
 
 

�

Figure 2.14 
Thermocouple with thermocouple sheath and grounded junction 



28  Practical Data Acquisition for Instrumentation and Control Systems 

In addition to the wiring suggestions made above, it is important to consider isolation 
and over-voltage protection in the measurement circuitry, especially as a safeguard from 
charge buildup and other transient over-voltages on long thermocouple cables. 

2.7 Strain gauges 
Strain gauges are the most widely used devices for the measurement of force, or more 
particularly strain resulting from force. The most common type of strain gauge is the 
bonded resistance strain gauge, which consists of a resistive material, usually metal film a 
few micrometers thick, bonded to a polyester backing plate. A typical strain gauge is 
shown in Figure 2.15. 

�

Figure 2.15 
Typical bonded resistance strain gauge 
 

The strain gauge operates on the principle that when strained, the length, cross-sectional 
area and resistivity of the metal film changes, thus changing the resistance of the 
conductor. When attached to a unit under test by an adhesive of some kind, the strain 
gauge experiences the same strain as the unit. The amount of strain can be measured by 
detecting changes in the resistance. Provided the change in length of the strain gauge is 
small, the relationship between resistance and strain is linear. 

The ratio of the percentage change in resistance to the percentage change in length is 
known as the ‘gauge factor’ (GF) and is a measure of the sensitivity of the gauge. 

00

0
/
/21

/
/

LLLL
RRGF

∆
∆

++=
∆
∆

=
ρρ

σ
 

Where: 
R0   =  resistance in ohms 
ρ   =  resistivity in ohms per meter 
L0   = length in meters 
∆R/R0    = fractional resistance change 
σ   = Poisson’s ratio 
∆L/L0    = fractional change in length 
∆ρ/ρ   = fractional change in resistivity 

 



Analog and digital signals  29 
 

The gauge factor, provided by manufacturers for a particular strain gauge, typically lies 
between 2 and 4 for commonly used metal foil gauges with nominal resistance of 120 Ω, 
350 Ω and 1 kΩ. Thus, if a 350 Ω gauge with a gauge factor of 2.0 is stretched by 1%, 
then its resistance will change by 2% or 0.57 Ωs. 

2.8 Wheatstone bridges 

2.8.1 General characteristics 
Due to its sensitivity, the Wheatstone bridge circuit is a commonly used circuit for the 
measurement of small changes in electrical resistance, particularly for strain gauges.  It 
comprises four resistive elements and can be excited by either a voltage or current source. 
The standard Wheatstone bridge configuration is shown in Figure 2.16. 
 

�

Figure 2.16 
Standard Wheatstone bridge configuration 
 

When excited by an input voltage VEX it can be shown that the output voltage V0 is 
given by the equation: 
 

  
 

  
  

R4 R3 
R3 

R2 R1 
R1 

VEX 
V0 

 + 
− 

+ 
= 

 
When the ratio of resistances R1 to R2 is equal to the ratio of resistances R3 to R4, then 

the measured output voltage is 0 V, and the bridge is said to be balanced. 
When a resistive element changes its resistance in response to the physical parameter 

being measured (e.g. a strain gauge) it is called the active element, while the remaining 
resistors are called completion resistors. If R1 is an active element, then an increase in the 
resistance of the active element R1 increases the output voltage. A decrease in this 
resistance will decrease the voltage appearing at the output. It is conversely true that if R2 
is an active element, then an increase in its resistance would result in a reduction of the 
voltage appearing at the output, while a decrease in this resistance would result in the 
output voltage increasing. 



30  Practical Data Acquisition for Instrumentation and Control Systems 

It can be shown that if any one of the bridge resistances is an active element whose 
nominal resistance (R0) is precisely matched to each of the other completion resistors (i.e. 
R0 = R2 = R3 = R4), then for a small change in the active element resistance (∆R), the ratio 
of the output voltage to the input voltage is given by: 
 

0 
0 

4 R 
R 

V 
V 

EX 

∆ 
= 

 
This equation holds true irrespective of which arm of the bridge contains the active 

element. 
Further to this, it can be shown that if there are (N) arms of the bridge which contain an 

active element, then for a small and equal change in the active element resistances ∆R, the 
ratio of the output voltage to the input voltage is given by: 
 

0 
0 

4 R 
R 

× 
N 

V 
V 

EX 

∆ 
= 

 
This equation is true only if the sensitivity, of adjacent active elements of the bridge 

(i.e. R1 & R2, R3 & R4, R1 & R3 or R2 & R4) to changes in the physical parameter being 
measured, is of opposite polarity. This means that if R1 and R2 are active elements, then 
for an incremental change in the physical parameter being measured, the resistance of R1 
increases by ∆R and the resistance of R2 decreases by ∆R. If the values in resistance of the 
active elements increase by the same amount, then the resistance in both arms would 
theoretically remain the same, the ratio of their resistances would remain the same, and 
their effects would cancel. 

The above equation shows that the Wheatstone bridge is a ratiometric circuit whose 
output voltage sensitivity is proportional to the excitation voltage and the number of 
active elements in the bridge. The more closely matched the completion resistances are to 
the active resistive element(s), the smaller will be the unbalanced output voltage 
compared to the input excitation voltage. In addition, the output voltage polarity is 
dependent on where the active elements are positioned in the bridge, and whether these 
active elements increase or decrease resistance to an increase in the physical parameter 
being measured. 

The quarter bridge, half bridge and full bridge configurations, in which strain gauges 
form the active elements, are discussed in the following sections. 

2.8.2 Quarter bridge configuration 
Where only one of the four resistors in the Wheatstone bridge is active, as shown in 
Figure 2.17, the circuit is known as a quarter bridge. 

�

Figure 2.17 
Quarter bridge circuit 



Analog and digital signals  31 
 

In this configuration, an increase in the resistance of the active strain gauge resistance 
RG1 increases the output voltage, while a decrease in this resistance will decrease the 
voltage appearing at the output. Therefore, for the quarter bridge configuration, the 
polarity of the output voltage, and whether the voltage increases or decreases with 
increasing strain, depends on the position of the strain gauge in the bridge circuit and 
whether the strain gauge resistance increases or decreases with increasing strain. 

Where the completion resistors are precisely matched (R2 = R3 = R4) and the nominal 
strain gauge resistance is chosen to be equal to these values then it can be deduced from 
the previous equations that for a small change in the active resistance ∆R, the micro-strain 
(µE = ∆L / L0 × 106) of the strain gauge is given by: 
 6  10 4 

× 
× GF VEX 
V0 E 

 
= µ 

 
Where: 
µE  = micro-strain (∆L / L0  × 106) 
GF  = gauge factor 
V0  = unbalanced output voltage 
VEX  = excitation voltage 
∆L  = change in length 
L0  = unstrained length 

This equation assumes that the change in strain gauge resistance from its nominal value 
is very small, compared to the nominal resistance value. 

2.8.3 Half-bridge configuration 
As we have seen, it is possible to increase the sensitivity of a quarter bridge circuit by 
replacing one or more of the completion resistors with other active elements. Adding a 
second strain gauge, as shown in Figure 2.18, subjected to the same strain will double the 
output from the bridge. This is known as a half bridge circuit. 
 

�

Figure 2.18 
Half bridge circuit 
 
Note: The placement of an identical strain gauge in the same side of the bridge would 
have no effect on the output voltage. Since the change in resistance in the adjacent arms 
would theoretically remain the same, the ratio of their resistances would remain the same 
and their effects would cancel. 



32  Practical Data Acquisition for Instrumentation and Control Systems 

2.8.4 Full bridge configuration 
In circumstances where it is possible to place strain gauges, which have equal, and 
opposite strain (i.e. on opposite sides of a bending beam), it is possible to make all arms 
of the bridge active and get four times the sensitivity. This configuration, shown in Figure 
2.19, is referred to as a full bridge. 

�

Figure 2.19 
Full bridge circuit 

2.8.5 Wiring connections 
As well as providing a choice of voltage or current excitation for the bridge circuit, signal 
conditioning equipment used to measure the output from a Wheatstone bridge, often 
provides two of the precision trimmed compensation resistors as part of its own circuitry.  
This provides flexibility in configuring quarter bridge, half bridge or full bridge circuits, 
but requires the user to add the active element(s) and any required matching 
compensation resistors. Any compensation resistors added by the user, and external to the 
signal conditioning equipment, should be precision-trimmed, with high accuracy and 
stability, especially with regard to temperature. 

As the voltage output sensitivity from the Wheatstone bridge is proportional to the input 
excitation voltage, it is possible that cable and connector resistance voltage drops may 
reduce the excitation voltage seen at the bridge circuit and lead to inaccuracies in the 
measured output. Consider the three-wire half bridge configuration of Figure 2.20. 

�

Figure 2.20 
Three-wire half bridge circuit wiring configuration 



Analog and digital signals  33 
 

For the three-wire half bridge configuration shown, the wire lead resistances RL1 and RL2 
appear in the opposite arms of the bridge and therefore have little effect on the bridge 
balance. However, they do affect the effective excitation voltage VEFF by a small amount. 
If the nominal strain gauge resistance is 120 Ω and the lead resistance is 1 Ω then the 
effective excitation voltage VEFF is given by the expression: 
 

EX EX EFF V ×V V 992 . 0 
121 
120 

= = 
 

The measured excitation voltage, VEXM, would therefore be 0.8% higher than the 
effective excitation voltage. This 0.8% error should be seen in context with typical 
uncertainty in the gauge factor of ± 1%. 

Where the lead wire resistance is more significant (especially for long cable runs) 
compared to the active element resistance, the five-wire configuration shown in Figure 
2.21, should be used to eliminate this error. In this configuration, two leads are used to 
provide current or voltage excitation for the completed bridge circuit, while two separate 
leads are used to measure the effective excitation voltage. The voltage drops caused by 
(RLI and RL2) will still result in the effective voltage excitation being reduced by the same 
amount as the three-wire half bridge configuration. However, since negligible current 
flows in the lead resistances (RL3 and RL4), the effective excitation voltage can be 
accurately measured (VEXM). 

 

�

Figure 2.21 
Five-wire half bridge circuit wiring configuration 
 

When using the three-wire quarter bridge configuration shown in Figure 2.22, both a 
single active element and matching completion resistor must be provided external to the 
signal conditioning equipment. 



34  Practical Data Acquisition for Instrumentation and Control Systems 

�

Figure 2.22 
Three-wire quarter bridge circuit wiring configuration 
 

In this configuration, the lead resistances (RL1 and RL2) appear in opposite arms of the 
left-hand side of the bridge and therefore have little effect on the bridge balance. 
Assuming that the lead resistances (RL1 and RL2) are insignificant compared to the strain 
gauge nominal resistance (i.e. VEFF = VEX) then the use of the third wire ensures that the 
unbalanced output voltage V0 will be correctly measured between points A and C of the 
bridge. If only two wires are used, then V0 will be measured as the voltage difference 
between points A and B and the lead resistances (RL1 and RL2) will both be in series with 
the strain gauge. Changes in RL1 and RL2 due to temperature would therefore be 
indistinguishable from changes in RG1 due to strain, using the two-wire method. 

Where the lead resistances (RL1 and RL2) are significant compared to the strain gauge 
nominal resistance value, then the error in the effective excitation voltage is the same as 
for the three-wire half bridge configuration. In this case, a five-wire quarter bridge con-
figuration should be used. 

2.8.6 Temperature considerations 
Changes in the resistance of a strain gauge can be caused by changes in the stress applied 
to the device, as well as variations in temperature. 

Typical resistive changes for metal foil gauges due to temperature and strain are 
0.015% /ºC and 0.0002 %/µE. For a strain gauge with these specifications, a one-degree 
change in temperature would cause an effective strain error of approximately 75 µE. 

Using a second strain gauge for temperature correction (unstressed), in the same arm of 
the bridge, gives significant reduction in the errors resulting from temperature changes.  
This is because the change in resistance due to temperature is the same for each of the 
strain gauges and therefore has a canceling effect. 

2.8.7 Measurement errors 
There are a number of error sources when measuring strain using the Wheatstone bridge.  
These are: 

Gauge Factor uncertainty (typically 1%). 
Bridge non-linearity. The equations derived in the sections above assumed that the 

change in strain gauge resistance is very small compared to the nominal gauge resistance. 
The error that would be introduced with an imbalance of 10000 µE is approximately 1%. 



Analog and digital signals  35 
 

This can be reduced by modeling the non-linearity of the gauge in software with a 
suitable polynomial. 

Matching of compensation resistors to the strain gauge. Where the compensation 
resistor in the same arm of the gauge is different by 1%, the error is 0.5%. 

Measurement errors caused by accuracy; resolution of the measuring device and 
lead resistances 

Temperature effects. The resistance of both the strain gauge and the compensation 
resistors vary with changes from the temperature at which a bridge is calibrated. This 
effect is greatly reduced by including an unstressed strain gauge in the same arm of the 
bridge. 

Self-heating of gauges. This can be greatly reduced by energizing the bridge only while 
measurements are being made. 



3 

��������	�
���	�����

���� ����	
���
	��

PC based data acquisition (DAQ) systems and plug-in boards are used in a wide range of 
applications. Typically, general-purpose DAQ plug-in boards are used for measuring ana-
log and digital input and output voltages. 

As we have seen, many transducers’ signals must be conditioned in some way before a 
DAQ board or measuring system can accurately acquire the desired signal. Signal con-
ditioning is the term generally used to describe the front end pre-processing required to 
convert the electrical signals received from transducers into signals which DAQ plug-in 
boards or other forms of data acquisition hardware can accept. 

In addition, many transducers require excitation currents or voltages, Wheatstone 
bridge completion and linearization to allow accurate measurement of the required signal. 
Therefore, most PC based DAQ systems include some form of signal conditioning equip-
ment. 

The fundamental functions that a signal conditioning equipment performs are: 
• Amplification 
• Isolation 
• Filtering 
• Excitation 
• Linearization 
 

The type of signal conditioning equipment required, and the manner in which this is 
interfaced within the DAQ system, is largely dependent on the number and type of trans-
ducers, their excitation and earthing requirements, and no less importantly, how far the 
transducers are located from the personal computer, which must acquire, analyze and 
store the transducer signal data. 

The signal conditioning functions performed are implemented in different types of sig-
nal conditioning products, covering a range of price, performance, modularity and ease of 
use. 



��������	�
���	�������
 
 

� �

This chapter discusses several of the main hardware configurations used when inte-
grating signal conditioning products into a DAQ system, as well as the general signal 
conditioning functions that must be performed. 

���� ������	���
������	�

�
	�
���

3.2.1 Amplification 
Amplification is one of the primary tasks carried out by signal conditioning equipment.  It 
performs two important functions: 

• Increases the resolution of the signal measurement.  
• Increases the signal-to-noise ratio (SNR). 
 

Amplification is primarily used to increase the resolution of the signal measurement. 
Consider a low-level signal of the order of a fraction of an mV, fed directly to a 12-bit 
A/D converter with full-scale voltage of 10 V. There will be a resultant loss of precision 
because the A/D converter has a resolution of only 2.44 mV (15.2 µV for 16 bit reso-
lution). The highest possible resolution can be achieved by amplifying the input signal so 
that the maximum input voltage swing equals the maximum input range of the ADC. 

Another important function of amplification is to increase the SNR. Where transducers 
are located a long way from the data acquisition board and the signal measurements are 
transmitted through an electrically noisy environment, then low-level voltage signals can 
be greatly affected by noise. Where the low-level signals are amplified at the data acq-
uisition board after they have been transmitted through the noisy environment, then any 
noise superimposed on the signal will also be amplified by the same amount as the signal. 
If the noise is of the same order of magnitude as the signal itself (i.e. the SNR is low), 
then the signal measurement may be lost in noise, leading to inaccurate and meaningless 
measurements. 

Amplifying the low-level signals before they are transmitted through the noisy environ-
ment increases the level of the required signal before they are affected by noise, thereby 
increasing the SNR of the signal for the same level of noise. Consider for example, a J-
type thermocouple, which outputs a very low-level voltage signal that varies by about    
50 µV/ºC. If the thermocouple leads were to travel through a noisy electrical environment 
for say 10 m, then it is possible that the amount of noise coupled onto the thermocouple 
leads could be of the order of 200 µV. This noise-induced error corresponds to 4ºC at the 
measuring device. Amplifying the signal with an amplifier gain of 500, close to the 
thermocouple, produces a thermocouple signal that varies by approximately 25 mV/ºC. 
At this higher signal level, the 200 µV of induced noise coupled onto the 10m cable 
would result in a much smaller error, adding only a fraction of a degree Celsius of noise 
to the measured temperature. 

3.2.2 Isolation 
An isolated signal conditioner passes a signal from its source to the measurement device 
without a galvanic or physical connection. The most common methods of circuit isolation 
include opto-isolation, magnetic or capacitive isolation. Opto-isolation is primarily used 
for digital signals. Magnetic and capacitive isolations are used for analog signals, mod-
ulating the signal to convert it from a voltage to a frequency and transmitting the fre-
quency signal across a transformer or capacitor without a direct physical connection 
before being converted back to a voltage. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

Isolation performs several important functions. Firstly, isolation provides an important 
safety function by protecting expensive computer equipment and DAQ boards, as well as 
the equipment operators, from high voltage transients that could be caused by 
electrostatic discharge, lightning, or high voltage equipment failure. While isolated signal 
conditioning equipment provides an effective physical barrier and transient voltage 
protection for the computer and DAQ equipment, typically up to 1500 V, separate over-
voltage protection is usually provided at the input(s) of the signal conditioning equipment 
to prevent internal damage to the signal conditioning equipment itself. In medical app-
lications, isolation prevents the possibility of potentially fatal voltage or current signals 
from reaching sensors or transducers attached to or implanted in the human body. 

Another important function of isolation is to ensure that ground loops or common-mode 
voltages do not affect the accuracy of measured signals. Ground loops, caused by a poten-
tial difference between the source ground and the ground reference of the measuring de-
vice, may cause inaccuracies in the measured signal, or if too large, may damage DAQ 
equipment. Using isolated signal conditioning modules will eliminate the ground loop, 
and ensure that the signals are accurately measured. 

We shall see later that common-mode voltage signals are those that appear equally on 
each input of a measurement system. They can be caused by potential differences in the 
ground references of the source and the measurement system (i.e. ground loops) or are a 
necessary part of the measurement process (e.g. measuring the temperature of a device 
that is many volts above ground potential). 

3.2.3 Filtering 
Filtering removes unwanted noise from signal measurements before they are amplified 
and presented to the A/D converter. In intelligent signal conditioning modules, integrating 
A/D converters go a long way to averaging (filtering) out any cyclical noise appearing at 
the input. Alternatively, software averaging may also be used to digitally filter out perio-
dic noise signals such as mains hum. This technique involves taking many more measure-
ments than is necessary to acquire the wanted signal, then averaging them to produce a 
single measurement. If the samples are averaged over the period of the cyclical noise 
signal then this signal will be averaged to zero. 

Where there is no other form of filtering, an analog hardware filter provides the 
cheapest option. There are two types of analog filter, namely passive filters that use only 
passive components (such as capacitors and resistors), and active filters that utilize 
operational amplifiers. 

Ideally, filters should eliminate all data at frequencies outside the specified frequency 
range, providing a very sharp transition between the frequencies that are passed and those 
that are filtered out. Most practical filters are not ideal and do not usually eliminate all the 
undesirable amplitude components outside a specified frequency range. 

Attributes common to filters are: 
• Cut-off frequency 

This is the transition frequency at which the filter takes effect.  It may be the 
high-pass cut-off or the low-pass cut-off frequency and is usually defined as 
the frequency at which the normalized gain drops 3 dB below unity. 

• Roll-off 
This is the slope of the amplitude versus the frequency graph at the region of 
the cut-off frequency.  This characteristic distinguishes an ideal filter from a 
practical (non-ideal) filter.  The roll-off is usually measured on a logarithmic 
scale in units of decibels (dB). 



��������	�
���	�������� 
 

� �

• Quality factor ‘Q’ 
This variable is an adjustable characteristic of a tuned filter and determines 
the gain of the filter at its resonant frequency, as well as the roll-off of the 
transfer characteristic, on either side of the resonant frequency. 

Active filters are more frequently used since they provide a sharper roll-off and better 
stability. Such filters are described below. 

Low pass filter 
Low pass filters pass low frequency components of the signal and filter out high fre-
quency components above a specific high frequency. An active low pass filter is shown in 
Figure 3.1. 
 

 

Figure 3.1 
Active low pass filter 

The transfer characteristic of an ideal low pass filter is shown in Figure 3.2. 

 

Figure 3.2 
Ideal low pass filter transfer characteristics 



�����
����������������������	���	
�����
��������	����
��	��
	����������

The transfer characteristics of a practical filter for minimum ‘Q’ and maximum ‘Q’ are 
shown in Figure 3.3. 

 

 

Figure 3.3 
Practical active low pass filter transfer characteristics 

High pass filter 
High pass filters pass high frequencies and filter out low frequencies beginning at a 
specific low frequency. An active high pass filter is shown in Figure 3.4. 
 
 

 

Figure 3.4 
Active high pass filter 

The transfer characteristic of an ideal high pass filter is shown in Figure 3.5. 
 



��������	�
���	�������� 
 

� �

 

Figure 3.5 
Ideal high pass filter transfer characteristics 

The transfer characteristics of a practical filter for minimum 'Q' and maximum Q are 
shown in Figure 3.6. 

 

 

Figure 3.6 
Practical active high pass filter transfer characteristics 

Band pass (selective) filter 
Band pass filters pass only those frequencies within a certain range specified by a low and 
high cut-off frequency. 

This is also known as a selective filter and combines a low pass and high pass filter in 
series, each tuned to the low and high cut-off frequencies respectively. The ideal transfer 
characteristic of an active band pass filter is shown in Figure 3.7. 

 



�����
����������������������	���	
�����
��������	����
��	��
	����������

 

Figure 3.7 
Ideal band pass filter transfer characteristics 

The transfer characteristics of a practical filter for minimum ‘Q’ and maximum ‘Q’ are 
shown in Figure 3.8. 

 

 

Figure 3.8 
Practical active band pass filter transfer characteristics 

Band stop (notch) filters 
Notch filters filter out a certain range of frequencies specified by a start and stop 
frequency, and pass all others. These filters combine a high pass and a low pass in para-
llel, each tuned to the low and high cut-off frequencies respectively. The ideal transfer 
characteristic of an active band stop filter is shown in Figure 3.9. 



��������	�
���	�������� 
 

� �

 

Figure 3.9 
Ideal band stop filter transfer characteristics 

The transfer characteristics of a practical filter for minimum ‘Q’ and maximum ‘Q’ are 
shown in Figure 3.10. 

 
 

 

Figure 3.10 
Practical active notch transfer characteristics 

Butterworth filter 
Butterworth filters provide a higher level of low pass filtering, containing two or more 
low pass filter stages.  The number of stages ‘n’ of the filter determines how sharp the 
roll-off is at the cut-off frequency. A two-stage filter of this type is known as a second 
order Butterworth filter as shown in Figure 3.11. 

A fourth order Butterworth filter would have two of the filter sections shown in Figure 
3.11 cascaded together. 

 



�����
����������������������	���	
�����
��������	����
��	��
	����������

 

Figure 3.11 
Two-stage Butterworth filter 

3.2.4 Linearization 
As we have seen, the output signals from transducers such as thermocouples exhibit a 
non-linear relationship to the phenomena being measured over a given input range. The 
data acquisition software typically performs linearization of these signals. However, 
where the non-linear relationship is predictable and repeatable this task can be performed 
by intelligent signal conditioning hardware. This typically requires the signal con-
ditioning equipment to be programmed for a particular type of transducer, but once 
completed, the measurements returned to the host PC or stored as part of the measure-
ment process are directly related to the phenomena (e.g. temperature) being measured. 

���� ��������	���
������	�

�
	�
���

Signal conditioning products, available from many different equipment manufacturers, 
are provided in many different forms covering a range of price, performance, modularity 
and ease of use. The type of signal conditioning hardware should be matched to the spe-
cific application. The main forms are discussed below. 

3.3.1 Plug-in board signal conditioning 
This range of signal conditioning hardware typically covers specialty plug-in data 
acquisition boards where the signal conditioning hardware is contained on the board 
itself. This is shown in Figure 3.12. 
 

 

Figure 3.12 
Plug-in DAQ board signal conditioning 



��������	�
���	�������� 
 

� �

Each board specializes in one type of transducer; thermocouple boards for interfacing to 
thermocouples, strain gauge boards for strain gauges, etc. These boards are typically used 
for small, specialized data acquisition systems that have a limited number of transducers 
located near the host computer. 

3.3.2 Direct connect modular – two-wire transmitters 
Two-wire transmitters are two-port modular signal conditioning modules that input an 
unconditioned signal on the input port and output a conditioned signal on the output port. 
A single module is required for each type of transducer (or actuator). These signal 
conditioning modules are not intelligent devices and do not perform on-board A/D con-
version. Instead, the conditioned analog signal is transmitted over two lines to the data 
acquisition board in the host PC, either as a voltage, or converted into a standard current 
loop signal (4–20 mA) to the data acquisition board, hence the name two-wire trans-
mitters. The simplified functional block diagram of a typical two-wire transmitter signal 
conditioning module is shown in Figure 3.13. 
 
 

 

Figure 3.13 
Functional block diagram of a two-wire transmitter signal conditioning module 

Voltage outputs (±10 V or 0–10 V), compatible with the single ended inputs of most 
data acquisition boards allow easy interfacing to the latest data acquisition board 
technology. However, due to voltage drops, which may occur on the signal lines and the 
effects of noise that is proportional to the length of the transmission lines, voltage outputs 
should only be used for short transmission lines. 

Current signals have much greater immunity to noise and can be transmitted over hun-
dreds of meters (up to 1000 meters), to a receiver that converts the currents back into a 
voltage, for A/D conversion at the PC. The receiver is principally a resistor, nominally in 
the order of 500 Ω for full-scale deviation of 10 V (500 Ω X 20 mA). A separate pair of 
wires is used for the current loop of each individual sensor, resulting in many cable pairs 
to the PC. A power supply (between 15–40 V), capable of driving as many current loops 
as there are modules, is required. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

As individual signal conditioning modules require external power, they are typically 
designed to plug into a mounting board with on-board power supply as shown in Figure 
3.14. 

 
Power Supply

Thermocouples Strain gauges Relays

Host Computer

DAC Board
Multi-core

Cable

 

Figure 3.14 
Board mounted modular signal conditioning 

A single connector on the mounting board is used for easy cable connection between 
the mounting board and the I/O of the plug-in data acquisition board. Cables are typically 
a multi-core twisted-pair. This allows many different types of transducers to be interfaced 
to the latest plug-in data acquisition boards, but does not facilitate distributed I/O. 

3.3.3 Distributed I/O – digital transmitters 
Often sensors must be remotely located from the personal computer in which the 
processing and A/D conversion of the analog data takes place. This is especially true in 
industrial environments where sensors such as thermocouples and strain gauges are 
located in hostile environments over a wide area, possibly hundreds of meters away. In 
noisy environments, it is very difficult for the very small signals received from sensors, 
such as thermocouples and strain gauges (in the order of mV), to survive transmission 
over such long distances, especially in their raw form, without the quality of the sensor 
data being compromised. 

An alternative to running long (and possibly expensive) wires from the transducers 
directly, or from two-wire transmitter modules, is the use of distributed I/O. Distributed 
I/O is available in the form of signal conditioning modules that are remotely located from 
the host PC, near the sensors to which they are interfaced. One module is required for 
each sensor used, allowing for high levels of modularity (single point up to hundreds per 
location). While this can add a reasonable expense to systems with large point counts, the 
benefits in terms of signal quality and accuracy may be worth it. 

One of the most commonly implemented forms of distributed I/O is the digital 
transmitter. These intelligent devices perform all the functions of simple signal con-
ditioning modules (two-wire transmitters) but also contain a micro-controller and A/D 
converter to perform the digital conversion of the signal within the module itself. 
Converted data is transmitted to the computer via an RS-232 or RS-485 communications 
interface. The simplified functional block diagram of a typical digital transmitter is shown 
in Figure 3.15. 

 



��������	�
���	�������
 
 

� �

 

Figure 3.15 
Functional block diagram of a digital transmitter signal conditioning module 

The use of RS-485 multi-drop networks greatly reduces the amount of cabling required 
because each signal conditioning module shares the same cable pair. It does however 
require an RS-232 to RS-485 converter to allow communications between the computer 
and the remote signal conditioning modules. 

Digital transmitters are available that provide two alternatives for configuring the 
distributed I/O system. In the first system configuration, shown in Figure 3.16, the digital 
transmitter modules are designed to plug into a mounting board with facilities to accept 
an external power supply. 

 

 

Figure 3.16 
Distributed I/O signal conditioning network using board mounted digital transmitter modules 

The second distributed I/O system configuration, shown in Figure 3.17 makes use of 
individual digital transmitter modules. Individual modules can be easily stacked together 
where many transducers are located in close proximity or can be positioned individually 
where they are required. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

 

Host Computer

RS-485 Interface
Board

Digital
Transmitter

Digital
Transmitter

Digital
Transmitter

Digital
Transmitter

Digital
Transmitter

Relay

Thermocouples

Strain gauge  

Figure 3.17 
Distributed I/O signal conditioning network using individual digital transmitter modules 

Like other signal conditioning modules, these devices require an external power supply. 
The power supply should be located to supply as many signal-conditioning modules as its 
rating will allow. 

���� �
��
��
�
�����
��
�����������������

When measuring analog input signals from transducers, it is unfortunately not just a 
simple matter of wiring the transducer leads to the signal conditioning equipment or data 
acquisition board, or connecting the signal conditioning equipment to the data acquisition 
board itself. 

Signal conditioning equipment and data acquisition boards typically provide a variety 
of methods for taking measurements of input signals. When determining the wiring 
connections and analog input configuration that will produce accurate and noise free 
measurements, careful consideration must be given not only to the type of signal pro-
duced by the transducer but also to the nature of the signal source. 

The most common electrical signal output by transducers or signal conditioning 
equipment is in the form of voltage. In certain situations, where the output signal from 
signal conditioning equipment must be transmitted over long distances or is particularly 
susceptible to noise, it may be converted to a current or frequency signal. In most cases 
however, the signal is converted back to a voltage signal before a measurement is taken. 
It is therefore necessary to understand the voltage signal source and the various methods 
of taking measurements of voltage signals. 

Two categories of voltage signal source are defined: 
• Grounded signal source 
• Floating (ungrounded) signal source 

 



��������	�
���	�������� 
 

� �

Three types of measurement are available on most signal conditioning equipment and 
data acquisition boards: 

• Single-ended 
• Differential 
• Pseudo-differential 
 

Since an understanding of the types of signal sources and measurement systems is 
necessary to determine the best methods of taking analog signal measurements, these 
topics are discussed in the following sections. 

3.4.1 Grounded signal sources 
By definition, voltage is a measurement of the potential difference between two points.  
Grounded signal sources have one of their signal leads connected to the system ground as 
shown in Figure 3.18. This is theoretically shown as earth potential, although the system 
ground is not necessarily at earth potential. The voltage output from the signal source is 
the potential difference between the system ground and the positive signal lead of the 
signal source. 

 

Figure 3.18 
Grounded signal source 

A common example of a grounded signal source is an instrument that is earthed via its 
AC plug to the building ground. 

3.4.2 Floating signal sources 
Floating or ungrounded signal sources, as shown in Figure 3.19, do not have either of the 
signal source leads connected to the system ground. This means that the signal source is 
not referenced to any absolute reference. The potential difference, that each of the signal 
lines may have, with respect to the system ground or earth potential between the signal 
lines, is not indicated in anyway by the voltage potential. 
 

 

Figure 3.19 
Ungrounded signal source 



�����
����������������������	���	
�����
��������	����
��	��
	����������

Examples of floating signal sources are transformers, isolation amplifiers, batteries, and 
battery powered instruments. 

3.4.3 Single-ended measurement 
A ground-referenced measurement system, as shown in Figure 3.20, is one in which the 
voltage measurement is taken with respect to ‘ground’. It is known as a single-ended 
measurement because only one signal line is required to determine the signal voltage, 
provided it is ground-referenced. 
 

 

Figure 3.20 
Single-ended measurement 

3.4.4 Differential measurement 
A differential measurement system, as shown in Figure 3.21, has neither of its inputs tied 
to a fixed reference, such as earth or system ground. 
 

 

Figure 3.21 
Differential measurement 

Differential measurement is beneficial because, noise induced equally into each of the 
signal lines appears as a common mode voltage at the input and is largely rejected (see 
Common mode voltages and CMRR, below). 

3.4.5 Common mode voltages and CMRR 

Common mode voltages 
Ideally a differential measurement system measures only the potential difference between 
its positive and negative terminals. Where a signal source is measured using differential 
inputs, and there is a voltage measured with respect to the measurement ground that is 
present on both input lines, then this voltage is referred to as a common mode voltage. 
This is shown in Figure 3.22  



��������	�
���	�������� 
 

� �

 

Figure 3.22 
Common mode voltages 

The common mode voltage Vcm can be calculated from the following: 
 

2 
) ( B A 

cm 
V V V + 

= 
 

Where��
VA  =  Voltage at the non-inverting terminal of the measurement system with 

respect to the instrumentation amplifier ground. 
VB  = Voltage at the inverting terminal of the measurement system with 

respect to the instrumentation amplifier ground. 
An example of a common mode voltage is the output from a bridge circuit, in which the 

small differential signal is superimposed over a much larger common mode voltage 
introduced by the excitation of the bridge circuit. 

Common mode rejection ratio (CMRR) 
Ideally, a differential amplifier would completely reject any common mode voltages 
present on its input signal lines and only amplify the potential difference between them.  
Practically, however, these devices do not totally reject common mode voltages. The 
common mode rejection ratio (CMRR) measures the ability of a differential input 
amplifier to reject signals that are common to both signal inputs. 

The CMRR is defined as the ratio between the common mode signal present at the input 
to the amplifier and the signal produced by this voltage at the output of the amplifier, as 
defined by the following equation: 
 ) ( 10 log 20 

out 
cm 

V 
V CMRR =  

This ratio, normally expressed in dB, can be used to calculate the output voltage error, 
which would occur due to a common mode voltage appearing at the input. The higher the 
CMRR, the better the rejection of common mode signals, and the more accurate the 
output due to the differential signal being measured. Typically, a CMRR of 60 dB–80 dB 
could be expected for a well-designed system. 

Common mode input voltage limits 
Practically, measurement systems also have another limitation, and this is that there is a 
maximum and minimum common mode input voltage allowable on each input, with 



�����
����������������������	���	
�����
��������	����
��	��
	����������

respect to the measurement system ground. Applying common mode voltages to either 
input beyond this input range will result in measurement errors, or, in the worst case, 
possible damage to the measurement circuitry. 

3.4.6 Measuring grounded signal sources 

Differential measurement of grounded signal source 
A grounded signal source is best measured with a differential or pseudo-differential 
measurement system as shown in Figure 3.23. In this configuration, any potential diff-
erence (∆Vg) between the ground references of the source and the measurement system 
appears as a common-mode voltage to the measurement system. The measured 
differential voltage is defined as: 
Vm = (Vs.+∆Vg) – ∆Vg = Vs 
 

 

Figure 3.23 
Differential measurement of a grounded signal source 

Single-ended measurement of a grounded signal source 
When a single-ended measurement system is used to measure a grounded signal source, 
as shown in Figure 3.24, measurement problems may occur. In this configuration, any po-
tential difference (∆Vg) between the signal source ground and the measuring system 
ground is added to the signal source voltage as part of the measurement. The measured 
voltage is defined as: 
Vm = Vs.+∆Vg 

 

 

Figure 3.24 
Single-ended measurement of a grounded signal source 



��������	�
���	�������� 
 

� �

If the signal voltage levels are quite high compared to the reference ground potential 
difference, and the wiring between the source and the measurement system has low 
impedance, then the inaccuracies in the signal voltage measurement may be acceptable. 

3.4.7 Ground loops 
The classic ground-loop problem arises because true earth ground is not necessarily the 
same potential at different locations. Where the ends of a wire are earth grounded at 
different locations, the potential difference between them (which may vary from micro-
volts to many volts) can cause significant currents, referred to as ground-loop currents, to 
flow through the wire. In addition, this potential difference is not necessarily a DC level. 
As well as introducing DC offset errors, ground-loop currents contain AC components, 
such as AC mains hum (50–60 Hz), and are a continual source of noise. This is especially 
true when multiple ground points in a system separated by large distances are connected 
to AC power ground, or when the magnitude of signal levels in analog circuits is low 
compared to the noise voltage levels. 

Where signal lines are used to connect grounds then ground currents will flow with 
unpredictable results. A possibly more serious result of ground loops is the undefined 
current loop area, which may couple magnetic fields and induce other unwanted noise 
voltages in the signal conductors. 

3.4.8 Signal circuit isolation 
Where a signal conductor is required to be earthed at both ends and additional noise 
immunity is required, the ground loop should be broken by isolating the signal source 
from the measuring equipment. Isolation by the use of transformers, opto-couplers and 
common mode chokes, is shown in Figures 3.25, 3.26 and 3.27 respectively. 
 

 

Figure 3.25 
Transformer isolation of ground loop 

When a transformer is used to isolate the signal source from the measurement system 
the common mode voltage appears between the windings of the transformer and not at the 
input to the measurement circuit. Noise coupling between the circuits is very small and 
dependent on any stray capacitance between the transformer windings. Disadvantages 
with using transformers are that they are quite large and costly, especially where several 
signal circuits have to be isolated. In addition, transformers have limited frequency res-
ponse and provide no DC continuity from the signal source to the measurement system. 

The opto-isolated circuit, shown in Figure 3.26, is more typically used for digital 
signals because of the non-linearity of the opto-coupler to analog signals. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

 

Figure 3.26 
Opto-coupler isolation of ground loop 

When a transformer is connected as a common mode choke, as shown in Figure 3.27, 
DC and differential analog signals are transmitted while common mode AC signals are 
rejected. The common mode noise voltage appears across the windings of the choke. One 
big advantage with this type of isolation circuit is that multiple signal circuits can be 
wound on a common core without coupling. 

 

 

Figure 3.27 
Common mode choke isolation of ground loop 

3.4.9 Measuring ungrounded signal sources 
Ungrounded or floating signal sources can be measured using the single-ended, pseudo-
differential or differential measurement methods. 

Differential measurement of ungrounded signal sources 
When using the differential measurement system to measure the voltage signal from an 
ungrounded source, care should be taken to ensure that the common mode voltage level 
of the signal with respect to the measurement ground does not exceed the common mode 
input voltage limits of the measurement device. 

In addition, where there is no return path to the measurement system earth for the 
instrumentation amplifier input bias currents, then the flow of these currents through the 
source impedance, as well as charging stray capacitances, can cause the voltage level of 
the source to float beyond the valid range of the input stage of the measurement system. 
This is especially true where the source impedance is high. The degree to which the 
source voltage will float depends on the magnitude of the input bias currents and the 
system imbalance. 

A balanced measurement system meets the following criteria: 
• The input impedances to ground of each terminal of the instrumentation 

amplifier are equal. 
• The impedances of each signal cable to ground are equal. 
• The impedances to ground of each terminal of the source are equal. 



��������	�
���	�������� 
 

� �

Increased noise immunity is also achieved using a balanced system, since induced noise 
voltages appearing on the signal wires, are equal and should be cancelled out by the diff-
erential amplifier measurement. 

Bias resistors, connected between each input lead and the ground reference of the 
measurement system, as shown in Figure 3.28, provide a DC return path for bias currents 
from the inputs of the instrumentation amplifier to the reference ground. 

 

 

Figure 3.28 
Differential measurement of an ungrounded signal source 

Where the signal contains both AC and DC components (i.e. DC coupled) and the 
signal source has low impedance, only one bias resistor is required to be connected be-
tween the negative input and the ground reference. If the source impedance is relatively 
high compared to the input impedance of the instrumentation amplifier, then the im-
balance caused by using a single bias resistor could lead to erroneous results. Therefore, 
for high source impedances both input bias resistors should be used. 

For input signals, which contain no DC component (i.e. AC coupled), both bias resi-
stors are required. 

The bias resistors should be large enough to allow the source to float with respect to the 
measurement system ground and not to load the signal source (i.e. much greater than the 
source impedance), but small enough to keep the voltage at each input terminal within the 
input stage common mode voltage range of the measurement system. Bias resistors 
between 10 kΩ and 100 kΩ are typically used for low impedance sources such as 
thermocouples or when connecting the outputs of signal conditioning modules to data 
acquisition boards. 

3.4.10 System isolation 
To allow the measurement of signals that contain large common mode voltages, special 
hardware and measurement techniques are used. This typically involves isolating the 
measurement system from the ground reference so that signal lines, such as amplifiers, 
commonly used as a measurement reference, become a floating reference point.   

System isolation can be carried out in the following ways: 
• Using isolation transformers to reject the common mode voltage appearing on 

the signal lines. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

• Using isolation amplifiers to isolate the input signals from the measurement 
system ground reference. 

• Permanently isolating the measurement system ground using isolation 
transformers. 

• Temporarily isolating the measurement system ground reference with a digital 
switch whilst an input signal measurement is taken. 

���� �	
�����
�
������������

3.5.1 Definition of noise and interference 
Noise, by definition, is the presence of an unwanted electrical signal in a circuit.  Inter-
ference is the undesirable effect of noise. Where a noise voltage causes improper 
operation of a circuit, or its relative magnitude is of the same order as the desired elec-
trical signal, then it is interference. 

Noise itself cannot be totally eliminated but only reduced in magnitude until it no 
longer causes interference. This is especially true in data acquisition systems where the 
analog signal levels from transducers measuring a physical quantity can be very small. 
Compounding this in many instances is the physical cable distance over which these 
signals must be transmitted and the effect that noise may have on this extended circuitry. 

3.5.2 Sources and types of noise 
Before considering the cabling and shielding requirements of data acquisition systems, it 
is important to understand the nature and source of interference caused by the coupling of 
noise into data acquisition systems.   

Figure 3.29 illustrates that there are three components involved in any noise-induced 
problem: 

• A noise source (AC power cables, high voltage or high current AC or 
switching circuitry) 

• A coupling channel (common impedance, capacitance, mutual inductance) 
• A receiver (the circuitry that is susceptible to the induced noise) 
 
 

 

Figure 3.29 
Noise coupling between a noise source and a receiver 



��������	�
���	�������
 
 

� �

The mechanisms for coupling noise most common to data acquisition and control 
applications are as follows: 

• Conductive coupling 
• Capacitive coupling 
• Inductive coupling 

Conductive coupling 
Conductive coupling occurs where two or more circuits share a common signal return.  In 
such cases, return current from one circuit, flowing through the finite impedance of the 
common signal return, results in variations in the ground potential seen by the other 
circuits. A series ground connection scheme resulting in conductive coupling is shown in 
Figure 3.30. If the resistance of the common return lead is 0.1 Ω and the return current 
from all other circuits is 1 A, then the voltage measured from the temperature sensor,  
(VT), would vary by 0.1 Ω × l A = 100 mV, corresponding to 10 degrees error in the 
temperature measured. 
 

 

Figure 3.30 
Series ground connections resulting in conductive coupling 

Capacitive coupling 
Electrical fields occur in the vicinity of voltage-varying sources. Capacitive coupling is 
the transmission of external noise through mutual and stray capacitances between a noise 
source and receiving circuit. This is sometimes referred to as electrostatic coupling, 
although this is a misnomer, since the electrical fields are not static. Since cables tend to 
be the longest circuit elements, capacitive coupling is best demonstrated by considering a 
signal circuit connecting a signal source to a measurement system by a pair of long 
signal-carrying conductors.   

The physical representation of electric field coupling between a noise source and such a 
signal circuit is shown in Figure 3.31. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

 

Figure 3.31 
Physical representation of an electrical field coupling into a signal circuit 

The equivalent circuit representation for this system is shown in Figure 3.32. 
 

 

Figure 3.32 
Equivalent circuit representation of an electric field coupling into a signal circuit 

Where the source resistance (RS) is much less than the load resistance (RL) and also 
much lower than the impedance of the stray capacitances (C12 and C2G) (i.e. RS << 
1/jω[C12 + C2G]), then Vn = jω RS C12 VN  

The preceding equation clearly shows that the capacitively coupled noise voltage is 
directly proportional to the frequency and amplitude of the external noise source, the 
resistance to ground of the signal circuit, which in this case is RS, and the mutual 
capacitance between them. 

Where the signal source resistance is comparable in magnitude to the load resistance, 
and their combined resistances to ground are much larger than the impedance of the stray 
capacitances (C12 and C2G) (i.e. RS 1/jω[C12 + C2G]), then it can be shown that the 
capacitively-coupled noise voltage, is independent of the frequency of the noise source, 
and is much greater than in the case where the same resistance is relatively small.  



��������	�
���	�������� 
 

� �

This equation shows that the capacitively-coupled noise voltage is independent of the 
frequency of the noise source and is much greater in magnitude than in the case where the 
source resistance is relatively small. 

Where the amplitude and the frequency of the noise source cannot be altered, the only 
means for reducing capacitive coupling into the signal circuit is to reduce the equivalent 
signal circuit resistance to ground or reduce the mutual stray capacitance. The mutual 
stray capacitance can be reduced by increasing the relative distance of the signal wires 
from the noise source, correct orientation of the conductors, or by shielding. 

Magnetic field coupling 
Magnetic field coupling or inductive coupling is the mechanism by which time-varying 
magnetic fields produced by changing currents in a noise source, link with current loops 
of receiving circuits. The physical representation of magnetic field coupling between a 
noise source and a signal circuit is shown in Figure 3.33. 
 

 

Figure 3.33 
Physical representation of magnetic field coupling between a noise source and a signal circuit 

Lenz’s law states that the voltage, Vn induced into a closed loop signal circuit of area A 
is proportional to the rate of change of the magnetic field coupling the circuit loop, the 
flux density (B) of the magnetic field and the area of the loop. This is represented by the 
formula: 
Vn = 2 f BA cosφ (10-4) 

��������

f = the frequency of the sinusoidal varying flux density 
B  = the rms value of the flux density (gauss) 
A = the area of the signal circuit loop (m2) 
φ = the angle between the flux density (B) and the area (A). 
 

This equation indicates that the noise voltage can be reduced by reducing B, A, or cosφ. 
The flux density (B) can be reduced by increasing the distance from the source of the 



�����
����������������������	���	
�����
��������	����
��	��
	����������

field or if the field is caused by currents flowing through nearby pairs of wires, twist-ing 
those wires to reduce the net magnetic field effect to zero and or by alternating its 
direction. 

The signal circuit loop area (A) can be reduced by placing the signal wires of the 
receiving circuit current loop closer together. For example, consider a signal circuit 
whose current carrying wires are 1 meter long and 1 centimeter apart, lying within a 10 
gauss 60 Hz magnetic field, typical of fans, power wiring and transformers. The maxi-
mum voltage induced in the wires occurs for φ = 0º.  

Vn = (2π × 60)(1)(1 × 10–2)(10–4) = 3.7 mV. 
If the distance between the wires is reduced to 1 mm the noise voltage is reduced 

tenfold to 0.37 mV. 
The cosφ, term can be reduced by correctly orienting the wires of the signal circuit in 

the magnetic field. For example, if the signal wires were perpendicular to the magnetic 
field (φ = 90°) the induced voltage could be reduced to zero, although practically this 
would not be possible. Running the signal wires together in the same cable as the wires 
carrying the noise current source would maximize the induced noise voltage. 

The equivalent circuit model of magnetic coupling between a noise source and a signal 
circuit is shown in Figure 3.34.  In terms of the mutual inductance (M), Vn is given by: 
Vn = 2 π f M IN 

��������

IN is the rms value of the sinusoidal current in the noise circuit and f is its frequency. The 
mutual inductance (M) is directly proportional to the area (A) of the signal circuit current 
loop and the flux density, (B). 

The physical geometry of the current loop of the receiving signal circuit, specifically its 
area, is the key to why it is susceptible to magnetic fields and how to minimize the effect. 
Cables provide the longest and largest current loop. The effect of magnetic coupling is 
best demonstrated by considering the circuit of Figure 3.34, in which the signal cable 
current loop is coupled by a sinusoidal changing magnetic field with a peak flux density 
of Bφ. 

 

Figure 3.34 
Equivalent circuit model of magnetic coupling between a noise source and a signal circuit 

Ideally, the only voltage appearing across the load should be VS – the source signal 
voltage. However, the magnetic flux induces a voltage in the loop that appears in series 
with the receiver signal circuit. The voltage appearing across the load is the sum of the 
source voltage and the unwanted magnetic field induced voltage (VN). 

Twisting the insulated conductors of the loop together, as shown in Figure 3.35, can 
greatly reduce the amount of magnetic coupling into the signal lines. 

 



��������	�
���	�������� 
 

� �

 

Figure 3.35 
Reducing magnetic noise coupling by twisting of wires 

The voltage induced in each section of the loop now alternates phases; its magnitude 
reduced by the reduction in area of each twisted loop (i.e. 1/4). Provided there is an even 
number of twists in the signal conductors, the voltages due to the magnetic field cancel 
out and only the desired signal voltage appears across the load. 

����  
�
�
!
����	
���

3.6.1 Cable shielding and shield earthing 
The effects of noise due to capacitive coupling can be greatly reduced by the use of a 
cylindrical metal shield placed around the signal-carrying conductor. Consider the 
equivalent circuit shown in Figure 3.36, in which the signal conductors are completely 
enclosed by the ungrounded shield. 
 

 

Figure 3.36 
Equivalent representation of a signal circuit, completely surrounded by a capacitive shield 

Note that as the signal conductors are completely enclosed, there is no stray capacitance 
between the signal conductors and ground. 

Where the source resistance (RS) is much less than the load resistance (RL) and also 
much lower than the impedance of the shield to signal conductor stray capacitance (C2S), 
(i.e. RS << 1 / jωC2S), then the noise voltage capacitively coupled onto the signal line can 
be shown to be: 
Vn = jω RS C2S VNS  



�����
����������������������	���	
�����
��������	����
��	��
	����������

Where the shield is grounded (i.e. VNS =0), then the noise voltage induced in signal 
conductor is also zero. 

Completely surrounding the signal carrying conductors is not practical in most 
instances, since conductors will extend beyond their shield. Also, in the case of a braided 
shield there is a small stray capacitance due to the holes in the braiding. 

Where signal conductors extend beyond the shield, coupling capacitance between the 
signal conductor and the noise source (C12) and between the conductors and ground (C2G) 
will still exist, although they will be much smaller.  This is shown in Figure 3.37. 

 

 

Figure 3.37 
Equivalent representation of a practical circuit in which the capacitive shield does not completely surround 
the signal circuit 

Where the source resistance (RS) is much less than the load resistance (RL) and also 
much lower than the impedance of the stray capacitances (C12 and C2G) (i.e. RS <<  
l/jω[C12 + C2G + C2S]), then the noise voltage induced by external noise source onto the 
signal conductor is given by: 
Vn = jω RS C12 VN  

This is the same as for the unshielded conductor, however the mutual stray capacitance 
(C12) will be much less because of the shield. 

The value of C12 depends on the length of the signal conductor extending beyond the 
shield. 
Capacitive shielding works by bypassing or providing another path for induced noise 
currents to flow, so that they are not carried in the signal circuits. 

The rules of shielding are as follows: 
• For a shield to be effective it should be well grounded and the length of 

conductors extending beyond the end of the shield minimized. The screen 
continuity should be maintained at each termination point. 

• The screens of individually screened cores in the same cable should be 
electrically isolated from each other, but continuous for each line through 
terminal junctions. 

3.6.2 Grounding cable shields 
To be fully effective, capacitive shielding also requires attention to the number and 
location of shield earths.  In the way that the grounding of signal lines at both ends of a 
circuit may cause significant ground currents to flow, the same is also true for cable 
shields. For example, a potential difference of only 1 V between the grounds at either end 



��������	�
���	�������� 
 

� �

of a circuit will drive a current of 2 A around the current loop if its resistance is 0.5 Ω. 
Where the current flow is significant, and the ground loop created by earthing of the 
shield has a large area, shield currents may inductively couple unequal voltages into the 
signal cables and be a source of interference. Where possible, shields should be earthed at 
one end only. 

The placement of shield earths depends on the grounding of the signal source and the 
type of measurement system used. Figure 3.38 shows the preferred shield grounding 
when measuring an ungrounded signal source, using a measurement system where the 
signal lines are referenced to the amplifier common. It is assumed that amplifier common, 
although normally connected to ground may have a potential (∆Vg1) relative to ground 
potential. ∆Vg2 represents the difference in ground potential. The circuit equivalent for 
this system shows that in this configuration neither of the noise voltages (∆Vg1 or ∆Vg2) 
appears across the input terminals of the amplifier. Instead, if the shield was earthed at 
point B, then the noise voltage across the input terminals of the amplifier would be the 
voltage across the impedance of C2 as part of the voltage divider formed with C1.  

 

 

Figure 3.38 
Shield grounding when measuring an ungrounded source with a grounded measurement system 

When an ungrounded (differential) measurement system is used to measure a grounded 
source the preferred cable shielding is shown in Figure 3.39. The voltage ∆Vg1 represents 
the potential of the source common above earth ground potential. 

 

Figure 3.39 
Shield grounding when measuring a grounded source with an ungrounded measurement system 

The equivalent circuit for this measurement system again shows that the noise voltage 
appearing across the input terminals of the amplifier, is zero. If the shield was grounded 
at the other end of the cable at point D, then the noise voltage across the input terminals 
of the amplifier would be the voltage across the impedance of C2 as part of the voltage 
divider formed with C1.  

Where the signal circuit is required to be grounded at both ends, the difference in 
ground potential and the susceptibility of the ground loop to inductive coupling deter-



�����
����������������������	���	
�����
��������	����
��	��
	����������

mines the amount of noise in the circuit. The preferred shield grounding configuration 
when there is no other alternative is shown in Figure 3.40, in which a portion of the 
ground loop current is bypassed through the lower impedance shield. 

 

 

Figure 3.40 
Preferred shield grounding when measuring a grounded source with a grounded measurement system 

Breaking the ground loop on the signal lines using transformers or optical couplers can 
provide additional noise reduction. 

The rules of shield grounding are as follows: 
• Where possible, cable shields should be earthed at one end only. 
• Where the source is ungrounded and the signal amplifier is grounded, the 

input shield should always be connected to the amplifier common terminal, 
even if this point is not at earth ground. 

• Where the source is grounded and the signal amplifier is ungrounded, the 
input shield should be connected to the source common terminal, even if this 
point is not at earth ground. 

 
Grounding the shield has additional benefits such as providing a path for RF currents 

and preventing the build-up of static charge by providing a discharge path to ground. 

��"� #$
��
�
���
���
���
%��
����&���

Cables with copper conductors and plastic insulation are still the most common and 
reliable solution. This is not surprising as they combine the important elements of good 
electrical characteristics, low cost, mechanical flexibility, ease of installation and ease of 
termination. Aluminum conductors are seldom used for data communication cables 
because of the higher resistance and other physical limitations. 

The cable resistance depends on the cross-sectional area of the conductor (usually 
expressed in mm2) and the length of the cable. The thicker the conductor, the lower the 
resistance, the lower the signal volt drop, and the higher the current it can carry without 
excessive heating. 

The signal voltage drop, Vdrop =I (R+(2 π f L – 1/2 πf C)), depends on the: 
• Frequency of signal  
• Line current, which is dependent on the receiver input impedance, and 
• Conductor resistance, which is dependent on wire size and length. 
 

For DC voltages and low-frequency signals the resistance of the conductor is the only 
major concern. The voltage drop along the cable affects the magnitude of the signal volt-



��������	�
���	�������� 
 

� �

age at the receiving end. In the presence of noise, this affects the signal-to-noise (S/N) 
ratio and thus the quality of the signal received. 

As the frequency (or data transfer rate) increases, the other characteristics of the cable, 
such as capacitance and series inductance, become important. Inductance and capacitance 
are factors that depend on the construction of the cable and on the type of insulation 
material. 

The resistance, inductance and capacitance are distributed along the length of the cable. 
At high frequencies they combine to present the effects of a low pass filter. The sim-
plified electrical single-line diagram of a cable shows these electrical parameters 
distributed along the length of the cable and can be seen in Figure 3.41. Note, however, 
that a more complex model would also need to include a minor conductance factor (the 
inverse of resistance) in parallel across the cable. 
 
 

 

Figure 3.41 
Main parameters of a cable 

To derive the optimum performance from a cable, the correct type and size must be 
used. The following general rules apply to most applications: 

• Low data transfer rates: use low-frequency cables (for example, twisted-
pair cables) 

• High data transfer rates: use high-frequency cables (for example, coaxial 
cables, optical fiber; though there are some new types of twisted-pair cables 
that give very good high-frequency performance) 

• High noise environment: use shielded copper or optic fiber cables 

3.7.1 Twisted-pair cables 
Twisted-pair cables are the most economical solution for data transmission (differential 
circuit). They allow for transmission rates of up to 100 Mbps on communication links of 
up to 300 m (or even longer distances but with lower data transfer rates). Some new types 
of twisted-pair cables (e.g., ‘Twistlan’) are suitable for up to 100 Mbps. Twisted-pair 
cables can be STP (shielded twisted-pair) or UTP (unshielded twisted-pair). 

Twisted-pair cables are made from two identical insulated conductors that are twisted 
together along their length a specified number of times per meter, typically 40 twists per 
meter (12 twists per foot). The wires are twisted to reduce the effect of electromagnetic 
and electrostatic induction. An earth screen, or shield, is often placed around them as well 
to reduce the capacitance-induced noise, and an insulating PVC sheath usually provides 
mechanical protection. As the cross-sectional area of the conductor affects IR loss, hea-
vier conductor sizes are recommended for long distances. The capacitance of a twisted-
pair is low at about 15 to 50 pF/m, allowing a reasonable bandwidth and an achievable 
slew rate. 



�����
����������������������	���	
�����
��������	����
��	��
	����������

For full-duplex systems using balanced differential transmission, two sets of screened 
twisted-pair conductors are required in one cable, with both individual and overall 
screens. The entire cable is covered with a protective PVC sheath. 

3.7.2 Coaxial cables 
Coaxial cables are used in applications that require high data transfer rates of up to        
10 Mbps or high-frequency analog signals over long distances. 

Coaxial cables are more expensive than twisted-pair cables. They consist of a central 
conductor running through an enclosing cylinder on the same axis. This enclosing cylin-
der is made of a conducting material and is braided for flexibility. The insulating material 
separating the two conductors affects the cable capacitance, and hence the rate of signal 
propagation. The cable is usually covered with a protective PVC sheath, and sometimes 
with an additional shield as well. 

Several types of standard coaxial cables are manufactured; each has a different 
combination of electrical and mechanical characteristics to suit different applications.   

The main variables are: 
• Cable characteristic impedance  
• DC resistance 
• Power capacity 
• Bandwidth 
• Type of shielding 
• Mechanical characteristics (such as flexibility) 
 

Coaxial cables are more difficult to terminate than multi-core or twisted-pair cables.  
They are also more difficult to splice and connect to tee-offs.  Special tools and 
connectors are required for good coaxial cable terminations.  The ends of the cable should 
be terminated in a dead-end terminator to prevent signals reflecting from the ends of the 
cable.  Coaxial cables can sometimes be ordered to specified lengths and with terminators 
already in place. 

 
 



4 

���������	�	�
���
�����	��

���������	��


The key to the effective use of PCs in data acquisition and process control is the careful 
matching of the specific requirements of a particular application to the appropriate hardware 
and software available. 

The personal computer consists of the following main components: 
• System unit (CPU, memory, interrupt controller, DMA controller, power supply) 
• I/O devices (hard disk, floppy disk, keyboard, mouse, display, COM port(s), CD 
• Hardware BIOS (Basic input/output system) 
• Operating system (WIN 95, 98, 2000, NT) 
 

This chapter examines some of the important features of the PC as they relate to the data 
acquisition techniques studied in other sections of this course. The topics covered are: 

• Operation of interrupts 
• Operation of direct memory access (DMA) 
• Data transfer speeds (polled I/O, interrupt, DMA, repeat inst) 
• Memory (base memory, expanded memory, extended memory) 
• PCI, Compact PCI, ISA bus, EISA bus 
• Interfacing techniques to the PC bus 
• Compact PCI 

��

 ������	��
�������


An operating system is the software responsible for managing the computer’s resources (in-
cluding hardware and software), processing commands, and controlling program execution. It 
provides an interface between the application software and the hardware of a particular sys-
tem. Operating systems manage communications with the disk drive, display, printer, and 



��������������	����
����
������������
���������������������������
���
�

usually consist of a small machine dependent section of code, accompanied by a standard 
command interpreter. 

Programming languages, such as Basic or C, interact with the computer hardware through 
the operating system. The operating system provides a platform at a level less dependent of 
the computer hardware, providing a simpler and more uniform approach to software de-
velopment. Two popular operating systems available today are DOS and UNIX, each with 
their own advantages and disadvantages. 

4.1.1 DOS 
DOS is a 16 bit operating system that was originally developed in 1980, for the Intel 8088 
microprocessor in the IBM personal computer. When IBM developed the IBM PC, they used 
the new Intel 16 bit microprocessor, and therefore needed a new operating system. IBM 
contracted the development of the new operating system to Bill Gates at Microsoft, and his 
team bought a program called QDOS (Quick and dirty operating system) from Seattle 
Computer Products. Using this program as a starting point, they developed an operating 
system called MS-DOS. 

DOS structure 
DOS comprises several major components, each with a certain task within the system. The 
three most important components are the DOS-BIOS, the DOS kernel, and the command 
processor. 

DOS-BIOS 
DOS-BIOS is stored in a system file and appears under various file names such as 
IBMBIO.COM, IBMIO.SYS or IO.SYS. The DOS-BIOS contains the device drivers for the 
keyboard, display, printer, serial interfaces, real time clock, and floppy and hard disk drives. 

If DOS wants to communicate with one of these hardware devices, then it accesses the 
specific DOS-BIOS device driver. The DOS-BIOS is the most hardware dependent com-
ponent of the operating system and varies from one computer to another. 

DOS kernel 
The DOS kernel in the IBMDOS.COM or MSDOS.SYS file is normally invisible to the user.  
It contains file access routines, character input and output, and more. The routines operate 
independently of the hardware and use the device drivers of DOS-BIOS for keyboard, dis-
play, and disk access. 

Application programs can access the kernel functions in the same manner as the ROM-
BIOS functions. The functions are accessed via the software interrupt mechanism, and micro-
processor registers are used to pass the function number and any applicable parameters. 

Command processor 
Unlike the DOS-BIOS and kernel, the command processor is contained in the DOS file 
COMMAND.COM. The command processor displays the command prompt (i.e. C:\>) on the 
screen, accepts input from the user and controls input execution. Many users incorrectly think 
that the command processor is actually the operating system. In reality, it is only a spe-cial 
program that executes under DOS control. 

The command processor, also called a shell in programming terminology, actually consists 
of three modules. These modules are the resident portion, a transient portion, and the 
initialization portion. 



����������������������������� 

The resident portion, or the part that remains in memory, contains various routines called 
critical error handlers. These routines allow the computer to react to different events, such as 
when the user presses the <CTRL> <C> or <CTRL> <BREAK> key sequences, or when 
errors occur during communication with external devices (e.g. disk drives). 

The transient portion contains code for displaying the prompt, reading user input from the 
keyboard and executing input. The name of this module is derived from the fact that the 
memory where it is located is unprotected, and can be overwritten in certain circumstances. 

When program execution ends, control returns to the resident portion of the command 
processor. It executes a checksum routine to determine whether the transient portion was 
overwritten by the application program, and reloads the transient portion if necessary. 

The initialization portion loads during the booting process and initializes DOS. When the 
initialization process is complete, the memory it occupies can be over written by another pro-
gram. The commands accepted by the transient portion of the command processor can be 
divided into three groups – internal commands, external commands, and batch files. 

Internal Commands are contained in the resident portion of the command processor. DIR, 
COPY, and RENAME are examples of internal commands. 

External Commands must be loaded into memory from diskette or hard disk as needed.  
FORMAT and CHKDSK are examples of external commands. 

Batch Files are text files containing a series of DOS commands. When a batch file is star-
ted a special interpreter in the transient portion of the command processor, executes the batch 
file commands. Execution of batch file commands is the same as if the user entered them 
from the keyboard. An important example of a batch file is the AUTOEXEC.BAT file, which 
is executed immediately after DOS is first loaded. 

DOS device drivers 
Device drivers are software modules that are responsible for controlling and communicating 
with the hardware. They represent the lowest level of an operating system and permit all 
other levels to work independently of hardware. When adapting an operating system to 
various computers this is an advantage, as only the device drivers need to be modified. 

In earlier operating systems, device drivers resided in the operating system code. This 
meant that changes or upgrades of these routines to match new hardware were very difficult, 
if not impossible. DOS version 2.0 introduced the flexible concept of device drivers, making 
it possible for the user to adapt even the most exotic hardware to DOS. 

Since communication between DOS and a device driver is based on relatively simple func-
tion calls and data structures, the assembly language programmer can develop a device driver 
to adapt DOS to any hardware device. 

During the DOS boot process, standard display, printer and drive device drivers are 
installed sequentially, in memory. If the user wants to install his own driver, he has to inform 
DOS using the CONFIG.SYS file. This text file contains the information that DOS requires 
for configuring the system. The contents of the CONFIG.SYS file are read and evaluated 
during the boot process after linking the standard drivers. If DOS finds the DEVICE 
command in the CONFIG.SYS file, it knows that a new driver should be included. 

4.1.2 Microsoft Windows 3.1, 95, 98, 2000 and NT 
Microsoft Windows 3.1 was an extension for DOS that supported both multitasking and a 
graphical user interface. Its graphical user interface (GUI) was a symbolic interface that 
attempted to improve the speed of communication between people and computers. Windows’ 
ability to run multiple applications simultaneously (multitasking), and transfer information 
between applications provided further advantages for any application. 



��������������	����
����
������������
���������������������������
���
�

With the advent of Windows as a graphical interface we have gone from Windows 3.11 to 
95 and NT, to 98 and now Windows 2000. It has been the direction of the Microsoft 
Corporation to move the PC operating system away from DOS. This has been done for many 
very good reasons. DOS had many problems, the worst of which was the memory allocation 
system. Microsoft used 95 and 98 as small steps to move the PC operating system further and 
further away from DOS. 2000 and NT do not use DOS at all. These operating systems have 
one major problem when it comes to data acquisition. It is in the timing. The graphical 
interfaces from 95 and up do not consider the peripherals as high priority. Windows itself 
considers the operating system as the most important thing in the computer. The 95 and 
higher computers do true multitasking with every window opened as a virtual computer 
within the computer. Even applications that are not viewable by the user i.e. running in the 
background, are handled like virtual computers. This means that if the operating system, 
background program, or running application, need service, the operating system decides who 
is serviced. Just because a data acquisition program is running, it does not mean that it will 
have high priority. Timing therefore cannot be guaranteed when using these operating sys-
tems. 

Due to this problem, data acquisition users and designers have often looked elsewhere for 
an operating system that will guarantee direct access to the data acquisition system. Some 
have locked themselves into DOS while others have tried UNIX. The problem with these 
operating systems is that they have their own problems. DOS is old and not supported by 
anyone, including Microsoft. UNIX is limited by the software available and a good graphical 
interface. This may change with Linux. The best one can do is not use Windows products 
when timing is critical, especially when the computer is used to control a time critical 
process, or alternatively, to strip everything off the computer except the data acquisition 
program. However, even this will not guarantee correct timing.    

Some of the advantages of Microsoft Windows are: 
• Standard graphical user interface for all applications 
• Natural user interface that is easy to learn and use 
• Application programs that are independent of system devices 
• Multitasking support 
• Support for dynamic data exchange 
• Virtual memory management 

Multitasking 
Multitasking is the ability of the operating system to run multiple application programs 
simultaneously. With Microsoft Windows, you can execute two or more application programs 
at the same time. Each application has its own window allowing the user to switch between 
applications. 

Graphical user interface 
The graphical user interface allows the user to execute application programs, by simply se-
lecting a graphic symbol or icon representing that application. Icons are small symbols that 
are used to represent files, programs, or program tools. 

Graphical user interfaces are important for computer systems because they provide sym-
bolic interfaces, giving the user visual or graphic control over program execution. It also 
provides a common interface with the user for all application programs, making it easier to 
learn new application programs. At the same time, graphical user interfaces provide software 
developers with visual tools for developing programs that take advantage of the user 
interface. 



����������������������������� 

Graphical user interfaces offer several advantages to an application program: 
• Communication between the application program and the user is in a natural 

symbolic form that more closely resembles the human thinking process 
• Communication between the user and the computer is faster, as the user is not 

required to enter program names 
• The learning process for programs is faster, since the communication is more 

natural and symbol oriented 
• Programs can be more powerful.  In a conventional program, intricate operations 

that are generally difficult for the user and often purposely omitted by the 
program designer, are now more feasible. 

 
Because of these advantages, most developers believe that graphical user interfaces will be 

the primary interfaces used by application programs in the future. However, the graphical 
user interface does have some disadvantages with respect to current hardware and software: 

The amount of memory and disk space needed to support the graphic environment is much 
larger than that needed for conventional (or text oriented) environments 

Higher processing speeds are required to support the graphic environment, as larger am-
ounts of data must be moved around, particularly from the hard disk to the display 

Since hardware must be faster and contain more memory, the hardware costs are con-
sequently higher 

The amount of programming support needed for a graphic environment is more extensive. 

Virtual tools 
The Microsoft Windows graphical user interface, provides an ideal environment for virtual 
tools. In conjunction with digital and analog acquisition and control boards, virtual tools 
allow users to set up experiments, acquire data, and graphically display the results on the 
screen in real time. 

Virtual tools can be developed by professional software engineers, or by less experienced 
users, by using packaged software. Specific software packages are available that allow the 
user to edit, control and logic strategies. The user can move function block icons from on-
screen libraries onto the desktop and connect them into a flowchart. 

Display editors allow the user to set up color graphic displays, such as instrument panels, 
control panels and charts. When the display panel is complete, the user simply connects 
function icons to it for real-time graphical output. A typical example of a virtual tool would 
be an oscilloscope with the CRT display and front panel controls emulated on the screen, and 
signal input provided by an analog to digital conversion board. 

Virtual memory 
Microsoft Windows allows an application program to apparently access more memory than is 
physically available. This virtual memory is achieved by using reserved space on the hard 
disk drive to emulate physical memory. Windows can also manage memory for the app-
lication programs on a dynamic basis, through the use of swap files. 

4.1.3 UNIX 
The UNIX operating system, originally developed by AT&T Laboratories in the late 1960s, is 
a powerful multi-user and multitasking operating system. UNIX is available for nearly any 
computer that contains sufficient real memory and a fast hard disk. 



��������������	����
����
������������
���������������������������
���
�

 

UNIX shell 
Similar to the DOS command processor, the UNIX shell software processes commands 
entered by the user into instructions for the system’s internal syntax. The name shell really 
describes the function (i.e. hard material that stands between the core of the system and the 
outside world) providing a robust user interface for the operating system. 

Commands are usually separate executable programs that the shell finds and executes in 
response to typed instructions. But the shell is actually much more powerful and useful than 
just a means of passing commands to the system for execution. 

UNIX file system 
The UNIX file system is based on a hierarchical structure, where files are arranged within 
directories that are, themselves, files inside other directories. A tree-like structure emerges, 
with all branches eventually tracing back to the root directory. 

Unlike DOS, in the UNIX operating system all hardware and software objects are treated as 
files and behave like files. All input and output is done by reading or writing files, because all 
peripheral devices, even the user terminal, are files in the file system. This philosophy means 
that a single, homogeneous interface handles all communication between a program and 
peripheral devices. 

���
 ������	��
��
	���������


Interrupts are the mechanism by which the CPU of a computer can attend to important events 
such as keystrokes or characters arriving at the COM port only when they occur. This allows 
the CPU to execute a program and only service such I/O devices as needed without requiring 
constant attention. 

An interrupt is not an expansion bus cycle, but a cycle on the CPU board.  
 

There are three groups of interrupts that may occur in a PC: 

Hardware interrupts 
These are generated electrically by I/O devices that require attention from the CPU. 

Software interrupts 
There are 256 possible interrupt types that can be generated by software. 

Processor exceptions 
Exceptions are generated when an illegal operation is performed in software (for example 
divide by zero). 
 
The following sections will examine hardware interrupts in detail, as these are mechanisms 
by which expansion cards transfer data to the PC’s memory. 
 



����������������������������	 

 
 

Figure 4.1 
IRQ 

4.2.1 Hardware interrupts 
Two types of hardware interrupt are available, non-maskable interrupts (NMI) and the mask-
able interrupt (INTR), connected respectively to the NMI and INTR input pins of the CPU. 

4.2.2 Non-maskable interrupts 
Since NMIs are not maskable internally in the CPU, logic on the system board uses an I/O 
register port (A0h) bit to mask and unmask the NMI. 

The CPU’s NMI interrupt input is transition-sensitive or edge-sensitive with a low to high 
transition triggering the interrupt. It is used to indicate to the CPU serious conditions, such as 
system RAM parity errors or impending power failure. 

NMIs can also occur when the bus expansion signal /IOCHK (I/O channel check) is 
asserted low, bit 3 of Port 61h is cleared and NMIs are enabled with port A0h. The /IOCHK 
signal is used by I/O devices to indicate that a serious error such as a memory parity error or 
an uncorrectable hardware fault has occurred on their expansion board. 

When the CPU receives an NMI, it automatically begins executing the code pointed to by 
interrupt vector 2 (i.e. a type 2 interrupt is generated). 

4.2.3 Maskable interrupts 
The CPU recognizes a hardware maskable interrupt when its INTR input goes from low to 
high with the interrupt enabled. INTR interrupts are enabled/disabled by setting/clearing the 
interrupt enable flag bit IF in the CPU FLAGS register. 

4.2.4 Programmable interrupt controller(s) 
As there is only one maskable hardware interrupt line (INTR) and many I/O devices which 
must inform the CPU that they require servicing (by generating interrupts), there needs to be 
a method of prioritizing the PC’s interrupt structure for more than just one interrupt. This task 
is performed by the 8259A programmable interrupt controller (PIC), which accepts interrupt 
requests from I/O devices, prioritizes and stores them, and generates the interrupt request 
signal (INTR) to the CPU as required. 

The PC/XT has only one 8259A PIC with interrupts IRQ0 to IRQ7, whilst the 80286/80386 
and 80486-based PCs have two 8259As. The output of the second (or slave PIC) 8259A is 
connected directly to the IRQ2 channel of the master PIC. 

Hardware interrupt requests by I/O devices are made on the interrupt lines IRQ (15..14), 
IRQ (12..9), IRQ (7..3). IRQ 0,1,2, 8 and 13 are used by the system board and are not 



�
������������	����
����
������������
���������������������������
���
�

available to the expansion bus. A list of standard and common interrupt allocations is 
provided in Table 4.1 below. 

 

Interrupt 
level 

Interrupt type 
number 

Standard device Available on 
ISA bus 

IRQ0 8 (8h) System timer No 
IRQ1 9 (9h) Keyboard No 
IRQ2 10 (Ah) Redirected to IRQ9 Same as IRQ9 
IRQ8 112 (70h) Real time clock No  
IRQ9 113 (71h) Display adapter (VGA) 

network card 
Yes 

IRQ10 114 (72h) Free Yes 
IRQ11 115 (73h) Free Yes 
IRQ12 116 (74h) Free Yes 
IRQ13 117 (75h) Math coprocessor No 
IRQ14 118 (76h) Hard drive controller Yes 
IRQ15 119 (77h) Free Yes 
IRQ3 11 (Bh) Serial port 2 (and / or 4) Yes 
IRQ4 12 (Ch) Serial port 1 (and / or 3) Yes 
IRQ5 13 (Dh) Parallel port 2 Yes 
IRQ6 14 (Eh) Floppy drive controller Yes 
IRQ7 15 (Fh) Parallel port 1 Yes 

 
Table 4.1 
 

The 8259A PIC has the following features: 
• IRQ inputs are prioritized with the lower numbered inputs having the higher 

priority. When the slave PIC is cascaded into IRQ2 of the master PIC on the 
PC/AT type systems, IRQ0 and IRQ1 have a higher priority than the slave PIC 
IRQs (IRQS–IRQ15). However IRQ3–IRQ7 have a lower priority than the slave 
PICs IRQ8–IRQ15 

• Since IRQ2 is not available for expansion boards, any interrupt requests on IRQ2 
(from expansion boards originally designed for use in XT type boards) are 
transparently routed to IRQ9 by the system board 

• IRQs can be individually masked (enabled or disabled). This is performed by 
writing to the PIC’s operation command register (OCWl) – a single byte 
describing the interrupt status for the eight IRQ inputs 

• It automatically issues the interrupt type bytes to the CPU during the INTA cycles 
(see I/O devices requesting interrupt service p. 74). The master PIC can generate 
interrupt types 08h to 00h, whilst the slave PIC (when available) is programmed 
to generate interrupt types 70h to 77h, see Table 4.1 

• It automatically tracks which interrupts are being serviced by the CPU, to prevent 
multiple occurrences of the same interrupt 



����������������������������� 

• IRQ inputs can be configured as edge-sensitive (normal) or level-sensitive via the 
initialization command word (ICW) register 

4.2.5 Initialization required for Interrupts 
Before interrupts can be handled correctly the following functions must be performed: 

Initialize the ‘interrupt vector table’ located in the first 1024 (1 k) bytes of system memory 
to contain the addresses of the interrupt service routines of each of the 256 possible 
interrupts. Each four-byte address consists of an instruction pointer (IP) and code segment 
(CS) value. A large number of these are initialized by the BIOS and DOS as part of the 
system boot and operating system startup procedures. Initialize the 8259A PIC(s). This is 
largely initialized by the BIOS as part of the system boot. 

Enable the system interrupt INTR by setting the interrupt enable flag bit IF in the FLAGS 
register. 

4.2.6 I/O devices requesting interrupt service 
When an I/O device asserts an interrupt request, an ordered sequence of events occurs, to 
direct the CPU to the interrupt service routine (ISR) that will service the specific request. 

We will assume that any system and remote I/O device initialization that is required to 
allow the interrupt request to be handled correctly has already occurred. 

The sequence of events is as follows: 
• The I/O device hardware activates an interrupt request by asserting its IRQx line 

from ‘low’ to ‘high’. This signal is usually ‘latched’ high by an interrupt request 
latch on the I/O device and remains high until the latch is reset and the interrupt is 
acknowledged (thus allowing further interrupts). These last tasks are performed 
by the ISR (see Interrupt service routines, p. 75). 

• The interrupt controller receives this IRQx interrupt request and prioritizes it with 
other requests that may be coming in or pending. The interrupt controller will 
then send an interrupt request to the CPU on the INTR signal line under the 
following conditions: 

− This is the only interrupt request. 
− A lower priority interrupt is in progress. 
− Several interrupts are pending but this interrupt has the highest priority. 

• If the CPU has interrupts enabled, it acknowledges the interrupt request by 
sending two INTA pulses to the interrupt controller. The first freezes the priority 
levels in the interrupt controller, while the second requests an 8-bit pointer value, 
called the ‘interrupt type’. 

• The interrupt controller places the 8-bit interrupt type onto the CPU data bus. This 
‘interrupt type’ byte is the means by which the CPU knows where to look for the 
address of the interrupt service routine that will service the I/O device. 

It is used to index the ‘interrupt vector table’ located in the lowest 1024 (1 k) 
bytes of system memory. Each of the table’s 256 entries (four bytes each) 
contains the segmented memory addresses of all the ISRs. 

The CPU multiplies the interrupt type by four (4) to get the offset to the 
interrupt vector table where the address of the appropriate ISR will be located. 
Therefore, for interrupt type S, the address of the initial service routine (ISR) to 
be executed will be address 20h (32nd byte). 

• The CPU saves the information necessary to allow the program currently being 
executed to resume execution at its next instruction upon completion of the ISR. 



��������������	����
����
������������
���������������������������
���
�

It does this by saving the current code segment instruction pointer (CS:IP) and 
system FLAGS registers onto the stack. 

It is important to note that at this time the interrupt enable flag bit IF of the CPU 
FLAGS register is also cleared, disabling further interrupts. 

The CPU finally fetches the instruction pointer (IP) and code segment (CS) 
value from the interrupt vector table at the correct location for the interrupt being 
serviced, and branches to this address. 

It should be noted that the CPU assumes that the address retrieved is in fact the 
starting address of a valid ISR. If it is not, then the CPU begins executing at this 
address anyway and will probably never return, causing the program being exe-
cuted when the interrupt occurred to appear ‘locked up’ or, even worse, to mal-
function, with potentially dangerous consequences. Due to the possible severity of 
this error, it is important to correctly initialize the interrupt vector routine for the 
interrupt service required (see Initialization required for interrupts, p. 74). 

4.2.7 Interrupt service routines 
Apart from the function(s) that are expected to be performed by the ISR and the reason it was 
requested in the first place, there are several other considerations and certainly some im-
portant tasks that must be performed within the ISR.   

These are listed below: 
• Any CPU registers that might be used by the ISR, (registers that the interrupted 

program could have been using), should be saved by pushing their current values 
onto the stack.  Only those registers whose values will be altered need be saved, 
although it is safe programming practice to save all registers (remember that the 
CS, IP and FLAGS registers are automatically saved by the CPU). 

• Since the interrupt enable flag bit IF in the FLAGS register has been cleared and 
interrupts to the CPU are disabled, a decision must be made whether to set this 
flag bit and re-enable INTR interrupts to the CPU. If this is the case higher level 
interrupts may interrupt the current ISR. Although this may be required, the 
consequences of allowing this must be considered carefully. 

Note that even when interrupt requests from the master PIC to the CPU are 
disabled, interrupts may still be received by the PIC(s) and will remain pending 
until serviced. 

The interrupt request latch on the I/O device requesting service must be reset so 
that further interrupts can be received from the same device. 

It is usual practice (but strictly dependent on the hardware of the expansion 
board) that resetting the interrupt request latch will leave the IRQ line disabled or 
in a high impedance tri-state. 

Pull up resistors on the system board are used to take the IRQx signal lines to a 
5 V logic level when not in use and, when floated, are guaranteed to be high after 
500 ns.  This means that the ISR must reset the I/O devices interrupt latch at least 
500 ns before issuing an end of interrupt (EOI) command to the PIC(s) (see 
below). 

This must be strictly observed to avoid the possibility of an unknown transition 
of the IRQ line from low to high in the high impedance state, inadvertently 
triggering an interrupt on the IRQ signal line. 

• An EOI command must be sent to the master PIC to re-enable interrupts on the 
same IRQ line. Where an interrupt occurred on one of the interrupt lines IRQ8–
IRQ15 via the slave PIC an EOI command must be sent to this PIC as well. 



����������������������������� 

• Upon completion of the ISR all registers saved onto the stack at the start of the 
ISR are retrieved and restored to their original values. 

• The very last instruction executed within the ISR is the IRET (return from 
interrupt) instruction. This signals the CPU that the ISR is complete. Upon exe-
cuting this command the CPU retrieves the original CS, IP and FLAGS register 
values from the stack and begins executing the interrupted program at the 
segmented memory location CS:IP. 

At this point the CPU is in exactly the same state as it was when the interrupt 
was first acknowledged. This allows the program (or possibly a lower priority 
interrupt), which was being executed when the ISR was called, to continue exe-
cution unaffected at its next instruction. 

Restoration of the FLAGS register automatically re-enables interrupts to the 
CPU. 

4.2.8 Sharing interrupts 
As we have seen an I/O device requesting an interrupt latches its IRQx line high until reset by 
the ISR. This precludes more than one I/O device from using the same interrupt line reliably 
at the same time. 

It is possible however for more than one expansion device to use the same interrupt request 
line IRQx if each device is guaranteed not to make interrupt requests when another device 
might be using the line. This is achieved by using IRQ line drivers with three state (tri-state) 
outputs. When an expansion board’s IRQ line is disabled, the output is in a high impedance 
state. Pull-up resistors on the system board are used to take the IRQx signal lines to a 5 V 
logic level when not in use. 

Where I/O devices use the same IRQx line, the interrupt service routine must be able to 
differentiate which device is the source of the interrupt. 

���
 ������	��
��
�	����
������
������
�����


In many I/O interfacing applications and certainly in data acquisition systems, it is often 
necessary to transfer data to or from an interface at data rates higher than those possible using 
simple programmed I/O loops. 

Microprocessor controlled data transfers within the PC (using the IN(port) and OUT(port) 
instructions) require a significant amount of CPU time and are performed at a significantly 
reduced data rate. Further to this, the CPU cannot perform any other processing during 
program controlled I/O operations. 

While the use of interrupts might allow the CPU to perform some concurrent tasks, certain 
applications exist where the amount of data to be transferred and the data rate required is too 
high. 

Two such applications are as follows: 
• Transferring screen information to the ‘video card adapter’ on board memory 
• Transferring data from a remote I/O device (data acquisition board) to the PC’s 

memory 
 

Direct memory access (DMA) facilitates the maximum data transfer rate and micro-
processor concurrence. Unlike programmed or interrupt controlled I/O, where data is 
transferred via the microprocessor and its internal registers, DMA (as its name implies) 
transfers data directly between an I/O device and memory (memory to memory DMA 
transfers are also possible). 



��������������	����
����
������������
���������������������������
���
�

Whichever CPU is being used, it must have a DMA feature to determine when DMA is 
required, so that it can relinquish control of the address and data buses, as well as the control 
lines required to read and write to memory.  In addition, the CPU must inform the I/O device 
that requires the DMA data transfer when it again requires control of the address and data 
buses and I/O control lines. 

Further to this, a separate DMA controller is required to actually perform the DMA I/O 
operations. 

 
Figure 4.2 
DMA 

4.3.1 DMA controllers 
In the PC/XT a single Intel 8237-5 DMA controller, with four channels (Ch0–Ch3), was 
used.  The PC/AT has two DMA controller chips, cascaded together in a similar manner to 
the 8259A PIC. The supplementary DMA channels (Ch5–Ch7) are 16-bit channels. Standard 
DMA channel usage is shown in Table 4.2. 

 

DMA 
channel 

Standard device Page register 
I/O address 

DRQ0 Free 87h 
DRQ1  SDLC 83h 
DRQ2  Floppy disk 81h 
DRQ3  Free 82h 
DRQ4 Used for cascading 

controller 1 
– 

DRQ5  Free 8Bh 
DRQ6  Free 89h 
DRQ7  Free 8Ah 

 
Table 4.2 
 

The 8237-5 DMA controller contains: 
• A two-byte address register containing the starting memory address from which 

data must be read. 



����������������������������� 

• A two-byte address register containing the current address to which data must be 
written. 

• A two-byte count register, which holds the number of bytes/words to be written in 
total. 

• A two-byte count register containing the current bytes/word count of each 
channel. 

• Control lines that allow the reading/writing of data from/to memory. 
 
As each device only supports 16-bit addresses (limiting access to 64 kB of memory), each 

DMA channel has an associated ‘page register’ in system I/O memory to provide the added 
upper 4 address lines required to address the complete 20-bit (1 MB) system base address 
space. 

4.3.2 Initialization required for DMA control 
Before any DMA operation can occur, the DMA controller must be initialized.  

Items requiring initialization are as follows: 
• Select whether the DMA controller will read or write to memory. 
• Configure the type of DMA data transfer. Four modes of DMA data transfer are 

available: 
− Single transfer mode 

The DRQx signal must be asserted for every byte/word transferred. 
− Block transfer mode 

A single DRQx signal DMA request initiates the transfer of an entire block of 
data. 

− Demand transfer mode 
Data is transferred as long as the DRQx signal DMA request is asserted and the 
terminal count has not been reached. 

− Cascade mode 
All DMA channels are programmed for single transfer mode. 

• The total number of bytes to be transferred is loaded into the appropriate total 
byte/word count register. The current byte/word count register is then 
automatically initialized. 

• The memory address to which the first data byte will be read/written is loaded 
into the start memory address register. The current memory address register is 
automatically initialized. 

• The 4-bit page register corresponding to the upper four bits of the 20-bit address 
is written using the I/O port addresses of the PC. 

• The DMA channel priorities should be set. When the PC is booted up, the ROM 
BIOS sets the priorities so that the lowest numbered channel has the highest 
priority. 

• The DMA controller(s) channels that are to be used should be enabled. Channels 
to be enabled have the channel mask register bits cleared. 

4.3.3 I/O devices requesting DMA 
Assuming that the necessary DMA controller has been initialized, the standard operation, 
when an I/O device requests DMA data transfer on one of the channels of the DMA con-
troller, is as follows: 



��������������	����
����
������������
���������������������������
���
�

• An I/O device requests a DMA transfer on a specified channel by asserting its 
DRQx (DMA request) signal from ‘low’ to ‘high’. The requesting device must 
hold its DRQx line ‘high’ until the DMA controller responds by asserting the cor-
responding /DAK line. 

• The DMA request is prioritized by the 8237 DMA controller and if it is the 
highest priority request, the controller asserts the HOLD signal to the CPU, 
requesting that the CPU relinquish control of the bus and float all its address, 
data, and control outputs. 

• After floating the address, data and control outputs, the CPU asserts the HLDA 
signal to the DMA controller. 

• When the DMA controller detects that the HLDA signal has been asserted, it 
asserts AEN, acknowledges the DMA request by asserting the corresponding 
DAKx ‘low’ to the requesting I/O device. This signal is usually used as a chip 
select for the I/O device, enabling it onto the bus. 

The DMA controller drives the lower 16 ISA bus address lines SA[15..0], with 
the address contained in the corresponding channel’s current address register. The 
upper address lines are driven by the corresponding DMA channel’s page register. 

For a write cycle, this address represents the destination in memory for the data 
supplied by the I/O device. The DMA controller first asserts the /IORC bus signal 
to instruct the I/O device to drive the data onto the bus. The /MWTC signal is 
then asserted low, instructing the memory to latch the data at its trailing edge. 

Throughout this cycle the bus command signals /IOWC and /MRDC remain 
inactive (high). 

• The DMA controller then performs the following functions: 
− Decrements the corresponding channel’s byte/word transfer count register. 
− Increments the same channel’s current address register. 
− Asserts the I/O device’s corresponding DACKx line. 

• Once an I/O device’s /DACKx line has been asserted by the DMA controller, it 
will release the DRQx line to an inactive state (low). 

• Upon detecting the DRQx line ‘low’, the DMA controller now drives the HOLD 
signal ‘low’. The CPU responds by dropping the HLDA signal to the DMA 
controller, thus indicating it is ready to again take control of the bus. 

 
In much the same way a DMA ‘memory read’ cycle is performed, the difference being that 

/IORC and /MWTC are inactive, while asserting /MRDC instructs the memory to drive the 
data onto the bus and asserting /IOWC instructs the I/O device to latch the data at its trailing 
edge. 

4.3.4 Terminal count signal 
The terminal count (T/C) is a bi-directional signal from the system-board, which can act in 
one of two modes, depending on the programming of the DMA controllers. 

In output mode, the system board asserts T/C to indicate that a DMA channel’s current 
byte/word count has rolled over from 0h to FFFFh when last decremented as part of a 
‘memory read’ or ‘memory write’ DMA cycle. 

The T/C signal is only asserted while the corresponding channel’s /DACKx signal line is 
also asserted.  In this manner, hardware on the I/O device can be used to determine that the 
T/C has been asserted because of completion of a DMA transfer it initiated, and not one on 
another channel by a different I/O device. 



����������������������������� 

In input mode, an I/O device to stop a DMA transfer can use T/C.  T/C is sampled by the 
system board when /IORC or /IOWC are asserted.   

If T/C is found asserted, the DMA transfer is terminated. 
If the channel is programmed for auto-initialize then: 

• The transfer starts at the address found in the starting address register (this is 
transferred to the current address register) 

• The current word/byte count register is set to the value contained in the total 
word/byte count register 

 
The auto-initialize feature allows the DMA controller to be automatically set up to accept 

more DMA requests after an earlier DMA transfer has been completed. 

4.3.5 DMA modes 
DMA cycles operate in single mode, because a DMA request initiates one DMA cycle in 
which one data transfer occurs. DMA allows the direct transfer of data from I/O devices to 
memory devices and vice versa (and from memory to memory) without involving the CPU. 
This makes it possible to transfer large amounts of data to and from memory in the back-
ground, at high speed. 

The DMA system is based on two 8237-type DMA controllers. Controller 2 provides DMA 
channels 5, 6 and 7 as well as the cascade input for controller 1. 

The 8237 device only supports 16-bit addresses (limiting access to 64 kB of memory).  
Each DMA channel has an associated page register on the main board to provide the add-
itional addresses, so that up to 16 MB of memory may be accessed via DMA. This means that 
if more than 64 kB is to be transferred via DMA, the page register must be repro-grammed 
after each 64 kB block and a new block of DMA transfer started. This can lead to time gaps 
in the DMA-transferred data if the data is arriving at high speed from a real-time data 
acquisition expansion board.   

To overcome this limitation, the following techniques may be used: 

Dual channel gap-free DMA 
At the end of the first 64 kB block of data, the board immediately switches to a second DMA 
channel and begins transferring the second block of data on it. The host software reprograms 
the first DMA channel to point the following (third) 64 kB block. When the second block is 
complete, the board immediately reverts back to the first DMA channel and continues the 
transfer, which allows the software to reprogram the second DMA channel. This ping-pong 
approach continues, filling up memory, until all the data has been transferred. This method is 
called dual channel gap-free DMA. Its advantages are that it can access virtually all memory 
up to 16 MB. It can operate without program intervention if the DMA device provides an 
interrupt-on-terminal count signal, but it uses up two of the six available DMA channels. 

Circular buffer DMA 
A buffer (up to 64 kB) may be set up in memory, and the DMA controller programmed to 
transfer data into the buffer. The controller is programmed for auto-initialize so that when it 
reaches the end of the buffer, it immediately continues transfer to the beginning of the buffer. 
The host computer software must process or transfer the data out of the buffer before the next 
cycle overwrites the previous cycle's data. This is called circular buffer DMA. The ad-
vantages are that it is simpler to implement, uses less memory, and allows processing while 
transferring the data. However, it generally requires much program intervention. 



��������������	����
����
������������
���������������������������
���
�

Normal DMA using on-board FIFO 
The DMA device uses a single DMA channel but it has an on-board cache large enough to 
store buffer data while the DMA controller is reprogrammed to point to the starting address 
of the next 64 kB memory block. This is normal DMA as far as the host PC is concerned. It 
allows gap-free DMA using one channel, with the additional hardware on the expansion 
board. The host DMA system must operate fast enough to be able to transfer not only the data 
that has built up in the cache while the DMA channel was being reprogrammed, but also 
subsequent data arriving at the cache. The process may also operate completely in the 
background if the board has an interrupt-on-terminal count signal. 

DMA operational timing is as follows: 
• The DMA device requests a DMA transfer by asserting its DRQ (DMA request) 

signal high. This causes the DMA controller to begin the process of requesting the 
bus. It sends a HOLD signal to the CPU, which causes the CPU to float all its 
address, data, and status outputs and assert its HLDA signal. When the DMA 
controller finds the CPU’s HLDA signal asserted, it asserts AEN, acknowledges 
the DMA request by asserting the channel’s /DAK line low and drives the ISA 
bus address, read, and write lines according to the DMA timing charts below. 

• For a memory-write / I/O-read DMA cycle, as shown in Figure 4.15, the lower 16 
address lines, SA[15..0] are driven by the DMA controller with the DMA 
channel’s current address register. The upper address lines are driven by the DMA 
channel’s page register. This address is the destination address in memory for the 
data. After asserting /DAK (which the DMA device normally uses as a chip select 
signal), the controller asserts /IORC and then /MWTC (/SMWTC). The /IORC 
instructs the I/O device to drive the data bus with its data, while the /MWTC 
instructs the memory to latch the data at its trailing edge. Throughout the cycle 
the other two command signals /IOWC and /MRDC remain inactive high. 

• The same timing and principle applies to an I/O-write / memory-read DMA cycle, 
shown in Figure 4.3. The difference is that /IORC and /MWTC are held inactive 
while /MRDC instructs the memory device to drive the data lines, and /IOWC 
instructs the I/O device to latch the data. 

 
On some computers the bus clock BCLK has different timings when DMA cycles are run 

and may be called S clocks instead of T clocks. Some computers may not allow wait states to 
be inserted into the cycle, while on others the wait state mechanism operates in the same way 
as CPU initiated bus cycles. A DMA cycle is normally completed in seven BCLK periods, 
but this may vary too. The first four DMA channels may only support 8-bit transfers on some 
machines. 



����������������������������	 

 
Figure 4.3 
Timing chart of a memory-write / I/O-read DMA cycle 

 

 
Figure 4.4 
Timing chart of an I/O-write / memory-read DMA cycle 

���
 ������
���	��
	�������	���
��� 
�!"#�


You may know that the XT used DMA to transfer data from the hard disk, while the AT does 
not.  The AT’s disk transfer rates are much higher (over 500 kB/sec for a standard AT bus 
interface) than the XT’s. The question arises: how can the AT achieve such high data transfer 
rates without using DMA? 

The answer is found in new instructions added to the Intel 80286 (and higher) processors.  
These are the repeat input and output string instructions. On the 8088/8086, repeat 
instructions are available for moving and processing strings in memory, but not to memory 
add-resses from I/O addresses (strings are just continuous sequences of bytes). Subsequent 
processors extended this to include I/O locations, from where a data acquisition board’s sam-
ples originate. 

To obtain a series of data samples from a board, the program initializes a counter register, 
sets up a destination memory address register and executes the repeat input string word 
instruction (REP INSW), giving the I/O address of the board’s data register. The instruction 
automatically reads a sample value, stores it at the memory address pointed to by the desti-
nation address register, increments this register, decrements the counter and continues trans-



�
������������	����
����
������������
���������������������������
���
�

ferring samples until the counter reaches zero. This method has distinct advantages, but the 
data acquisition board must meet certain requirements.   

The advantages are: 
• Very high speed (slightly higher than DMA because there is no overhead 

associated with the single-sample nature of PC type DMA) 
• Very simple to program 
• Does not need to use hardware methods at all 
 

The requirements are: 
• Since the PC just reads a block of converted samples, the board must have an on-

board or external pacer clock, convert all the readings without program inter-
vention, as well as have a fair-sized sample buffer to pre-store the samples in 
readiness for the REP INSW instruction. 

• The board must have a status flag to indicate the ‘buffer half full’ or ‘nearly full’ 
condition, so that the program can execute the REP INSW loop. If this flag is cap-
able of causing an interrupt request, collection may be done in the background, 
otherwise the program must poll the status flag at regular intervals to check if the 
data is ready for transfer. 

• As high-level language compilers do not support these instructions, the code must 
be written in assembly language. 

 
There is a 32-bit version of the repeat string instruction, but as the ISA I/O bus data width is 

16 bits, this does not offer significant advantages over the 16-bit instruction. 32-bit buses 
(EISA, VL and PCI) take advantage of this. 

��$
  �%%��
����
��������


The term ‘polled data transfer’ describes transfers of data to or from the CPU that are 
initiated by a CPU instruction. These are memory and I/O reads and writes. 

There are two sizes of data transfer: 8-bit and 16-bit, each with its own default timing. For 
backward compatibility with 8-bit devices, a 16-bit instruction, if executed by the CPU, and 
the expansion board does not indicate that it is a 16-bit device (with either of the /M16 or 
/IO16 signals), then the system board performs data bus translations. The 16-bit operation is 
converted into two 8-bit operations, and two 8-bit cycles are run instead of a single 16-bit 
cycle. 

The 80286, 80386 and 80486 processors have a machine cycle consisting of two clock 
periods or states. These are called TS – send status, and TC – perform command. The pro-
cessor machine cycle may be extended by additional command (TC) states, when the 
processor is in the command state, by driving its /READY input. This is achieved on the ISA 
bus with the CHRDY signal, and the additional TC states are called wait states (annotated TW 
and TAW in the timing charts). 

The system board, to ensure compatible timing, adds wait states and they may also be 
added and reduced by expansion boards. As BCLK, the I/O clock is generally slower than the 
CPU clock, the system board lengthens the periods of the machine states in the machine 
cycles that are to be run on the I/O bus. For example, if the CPU clock is 400 MHz and the 
I/O clock is 100 MHz, each T state in an I/O cycle will be lengthened by a factor of four over 
that of the main CPU. In this example, the bus cycle looks to the I/O device like a system 
with a CPU running at 100 MHz. 



����������������������������� 

The next few sections describe the actual timing relationships of the signals on the bus for 
the various types of bus cycles.   

These are: 
• Memory-read: data transfer from a memory device to the CPU 
• Memory-write: data transfer from the CPU to a memory device 
• I/O-read: data transfer from an I/O device to the CPU 
• I/O-write: data transfer from the CPU to an I/O device 
• DMA Write I/O: data transfer from a memory device to an I/O device 
• DMA Read I/O: data transfer from an I/O device to a memory device 
 

Memory-read and memory-write cycles are essentially similar and are discussed together, 
as are I/O-read and I/O-write cycles and the two different directions of DMA cycles. 

A further type of cycle run on the system board is the interrupt acknowledge cycle. It is not 
present on the expansion bus and therefore not relevant to expansion board design. 

Lastly, there may be cycles on the bus, run by bus master boards. 
The timing of these cycles obviously depends on the bus master board, but the initiation 

and conclusion (i.e. the bus arbitration) of bus master cycles have fixed timing specifications.  
This is not discussed here but guidelines were given in the previous section on bus signal des-
criptions. 

In the timing charts that follow, dots are used to indicate sampling points and shaded areas 
indicate a ‘don’t care’ state. 

Memory-read and memory-write cycles 
The following three timing charts show instances of 8-bit memory access: 

• A standard 6-BCLK cycle 
• A cycle which the expansion board extends (to seven BCLKs) with CHRDY 
• A cycle shortened by the expansion board to three BCLKs with the /NOWS signal 
 

As all the I/O bus cycles described here are fairly similar in mechanism, the first 
description below applies to all of them; the individual cycle descriptions that follow focus on 
additional details as well as on points of difference with the general description. 

Standard 6-BCLK 8-bit memory access 
Figure 4.5 shows the XT-compatible cycle, which is the default for I/O memory access in the 
absence of intervention by an expansion board. It consists of a TS state, the send status state, 
followed by four wait states inserted by the system board, followed by the perform command 
state, (TC). 

In the standard memory cycle, BALE goes active in the last half of TS. It indicates a valid 
address on the latchable address lines LA[23..17], and its trailing edge may be used to latch 
these addresses if they are required by the expansion board for the remainder of the cycle. 

Note that LA[23..17] are valid before the machine cycle begins and go invalid in the latter 
half of the state following TS. This allows them to be setup before the next machine cycle 
begins, and is called address pipelining. (On the EISA bus, all the address lines from A2 to 
A32 are available in latchable form, which allows more flexible shortening of the bus cycle.)  
Compare this to the address lines SA[19..0], which go valid just before the second machine 
state begins and remain valid throughout the remainder of the machine cycle (and a little into 
the next). The address lines are used to decode the address(es) of the device(s) on the expan-
sion board. 



��������������	����
����
������������
���������������������������
���
�

The read or write command signals (/SMRDC, /SMWTC, /MRDC or /MWTC) go active 
(low) just after the second half of the second machine state, T2. This indicates to the 
expansion board that it may begin latching the data on the data lines in a write cycle (note 
that the write data from the CPU is valid in the first half of T2, before the command signal 
goes active), or it may begin driving the data lines in a read cycle. The CPU latches the read 
data on the trailing edge of the read (/SMRDC, /MRDC) signal, while the adapter-board must 
latch the CPU data on the trailing edge of the write (/SMWTC, /MWTC) signal. This occurs 
at the end of the TS state. 

/M16 is sampled at the end of TS. Since it is inactive (high), an 8-bit, 6-wait state cycle is 
run. 

/NOWS is sampled on the trailing edge of BCLK, which is halfway through the wait states, 
T2 to T5 and is acted on if a command signal (a read or write line) is active. Since it is found 
inactive (high) in each wait state, the next wait state is inserted by the system board until the 
default number (four) of wait states has been run. If /NOWS is active at any of the sampling 
points, the remaining wait states will be discarded and the TC state is run, completing the 
cycle. 

The sampling of CHRDY starts at the end of the last default wait state, T5. Since it is 
inactive (high), no more wait states are added and the cycle is completed with TC. 

 

 
Figure 4.5 
Timing chart of a standard 6-BCLK 8-bit memory access cycle 



����������������������������� 

Extended 7-BCLK 8-bit memory access 
The 8-bit machine cycle with additional wait states is almost exactly the same as the standard 
cycle shown above in Figure 4.5. CHRDY is driven and held by the expansion board 
somewhere during the cycle before TC begins. The system board begins sampling CHRDY 
twice every machine state, beginning in the last default wait state (T5 in Figure 4.6). Since it 
finds it active (low), it runs another wait state (T6), during which it continues to sample 
/NOWS and CHRDY. Since CHRDY is found to be inactive at the end of T6, the machine 
cycle is completed with a TC state. 

The additional wait state has the effect of lengthening the bus cycle by one bus clock, 
which may allow slower devices to interface to the bus. If more time is required by the I/O 
bus device, CHRDY may be held low until the required cycle time is completed. 2.5 µs is a 
recommended maximum length of time for which CHRDY may be asserted. 

 

 
 
Figure 4.6 
Timing chart of an extended 7-BCLK 8-bit memory access cycle 



��������������	����
����
������������
���������������������������
���
�

Shortened 3-BCLK 8-bit memory access 
The shortened 8-bit machine cycle is also almost exactly the same as the standard cycle. The 
/NOWS line is sampled in the middle of the machine states, on the trailing edge of BCLK. In 
Figure 4.7, the system board finds /NOWS asserted (low) at the middle T3, and a command 
signal is active. T3 would have been a wait state, but because /NOWS is asserted, the system 
board immediately completes the machine cycle by converting it to a TC state. /NOWS may 
be asserted anywhere in the bus cycle to indicate that no further wait states are required. If the 
expansion board had asserted /NOWS before the middle of T2, a 2-BCLK cycle would not 
have been generated because in 8-bit cycles, the command signal is not active until after the 
middle of T2. 
 

 
 
Figure 4.7 
Timing chart of a shortened 3-BCLK 8-bit memory access cycle 

The next three timing charts show instances of 16-bit memory access: 
• A standard 3-BCLK cycle (Figure 4.8) 
• A cycle which the expansion board extends (to six BCLKs) with CHRDY (Figure 

4.9) 



����������������������������� 

• A cycle shortened by the expansion board to two BCLKs with the /NOWS signal 
(Figure 4.10) 

 
If the expansion board indicates that it is a 16-bit memory device by asserting /M16 (which 

is sampled at the beginning of T2), the system board runs a standard 3-BCLK 16-bit memory 
cycle. The timing is virtually the same as for the standard 8-bit memory cycle. The dif-
ferences are: /SBHE is of interest and goes active at the end of T1, the read or write command 
goes active just after the beginning of T2 instead of halfway through T2, and now the data is 
transferred on all 16 of the data lines. 

/NOWS and CHRDY are sampled in the same places as the 8-bit cycle, and as they are 
found inactive here, they do not influence the bus cycle. 

 

 
 
Figure 4.8 
Timing chart of a standard 3-BCLK 16-bit memory access cycle 



��������������	����
����
������������
���������������������������
���
�

Extended 6-BCLK 16-bit memory access 
If the access and setup times of the 16-bit attached bus memory device are longer than pro-
vided for by the default 3-BCLK bus period, it may, after asserting /M16, assert CHRDY to 
extend the bus cycle. 

The system board finds /M16 asserted at the end of TS and begins to run a standard            
3-BCLK 16-bit memory access. However, at the end of T2, it finds CHRDY asserted. It 
therefore runs another wait state (TAW1 in the chart). It expects to find CHRDY disasserted at 
the end of this additional wait state but, since it is sampled still active, another wait state is 
added. When CHRDY is found inactive (here, at the end of TAW3), the bus cycle is completed 
with a TC state. 

 

 
Figure 4.9 
Timing chart of an extended 6-BCLK 16-bit memory access cycle 



����������������������������� 

Shortened 2-BCLK 16-bit memory access 
If the memory device is capable of transferring data in a shorter time than the default 3-
BCLK period, it may, after asserting /M16, assert /NOWS to execute the cycle in two 
BCLKs. 

As before, the system board finds /M16 asserted at the end of TS, so it begins to run a 
standard 3-BCLK 16-bit memory access. However, halfway through T2 (which would have 
been a wait state), it finds /NOWS asserted. It therefore converts the wait state into a TC state 
and completes the bus cycle. 

 

 
 
Figure 4.10 
Timing chart of a shortened 2-BCLK 16-bit memory access cycle 

I/O-read and -write cycles 
The following three timing charts show instances of 8-bit I/O access: 

• A standard 6-BCLK cycle (Figure 4.11) 



��������������	����
����
������������
���������������������������
���
�

• A cycle which the expansion board extends (to seven BCLKs) with CHRDY 
(Figure 4.12) 

• A cycle shortened by the expansion board to three BCLKs with the /NOWS signal 
(Figure 4.13) 

 
8-bit I/O cycles are initiated when the processor executes an 8-bit IN or OUT instruction, 

while 16-bit cycles are run when the processor executes a 16-bit IN or OUT instruction and 
the expansion board responds by asserting /IO16. The command signals in I/O cycles go 
active ½ BCLK later than the command signals in memory cycles. 

Standard 6-BCLK 8-bit I/O access 
The 8-bit I/O access cycle is almost exactly the same as the 8-bit memory access. The 
differences are: the AEN signal goes low at the start of the cycle, indicating that an I/O cycle 
is in progress and not a DMA cycle; only the SA[15..0] address lines are used, and the read 
and write command signals are /IORC and /IOWC respectively which become active ½ 
BCLK later than the corresponding memory-read and memory-write signals. 
 

 
 
Figure 4.11 
Timing chart of a standard 6-BCLK 8-bit I/O access cycle 



����������������������������	 

Extended BCLK 8-bit I/O access 
If the I/O device needs to extend the cycle, it does so by asserting CHRDY in exactly the 
same manner as an 8-bit memory device. When the system board finds CHRDY active, it 
runs additional wait states at the end of the default number (four in this case) of wait states. 
 

 
Figure 4.12 
Timing chart of an extended BCLK 8-bit I/O access cycle 

Shortened 3-BCLK 8-bit I/O access 
The shortened I/O access operates in a similar manner to the shortened memory access. The 
system board finds /NOWS asserted in the T3 state so it completes the bus cycle at the end of 
the T3 state. 



�
������������	����
����
������������
���������������������������
���
�

 
 
Figure 4.13 
Timing chart of a shortened 3-BCLK 8-bit I/O access cycle 

The following two timing charts show instances of 16-bit I/O access: 
• A standard 3-BCLK cycle (Figure 4.14) 
• A cycle that the expansion board extends (to six BCLKs) with CHRDY (Figure 

4.15) 
 

Note that it is not possible for I/O devices to shorten cycles to run with no wait states (that 
is, to two BCLKs) because, for I/O cycles, the command signal goes active only after the 
trailing edge of BCLK in T2 (when /NOWS is sampled). Also /IO16 is sampled halfway 
through T3 and not at the end of T1 as in memory cycles. 

Standard 3-BCLK 16-bit I/O access 
If an I/O device indicates that it is a 16-bit device with the /IO16 signal, the system board 
runs a 3-BCLK I/O cycle. This cycle is almost exactly the same as the shortened 3-BCLK 8-
bit I/O cycle, except that the expansion board does not have to drive /NOWS and /SBHE is of 
interest in this cycle. 
 



����������������������������� 

 
Figure 4.14 
Timing chart of a standard 3-BCLK 16-bit I/O access cycle 

Extended 6-BCLK 16-bit I/O access 
Again, if a 16-bit I/O device cannot meet the setup and hold times of the standard 16-bit I/O 
cycle, it may drive CHRDY to cause the system board to insert more wait states, until 
CHRDY is disasserted by the expansion board. 
 
 



��������������	����
����
������������
���������������������������
���
�

 
Figure 4.15 
Timing chart of an extended 6-BCLK 16-bit I/O access cycle 

��&
 ����
��������
�����
���%%��
�'�(
	��������
�'�(
����


One of the key considerations for data acquisition systems using I/O expansion cards is that 
of the speed of data transfer between the I/O device and the PC’s memory. 

There are only two ways to transfer data: 
• Under software control (simple polled I/O, interrupts) 
• Under hardware control (DMA) 
 

The answer of relative speed can be found simply by looking at what is required to perform 
the transfer of one word from an I/O mapped I/O device to system base memory. 

Polled I/O is the simplest and most common method of data transfer between I/O devices 
and memory.   

Assuming that the readiness of data in the I/O device is indicated by an addressable I/O 
status register, then the minimum functions which the software must perform are as follows: 

• I/O read – data transfer from I/O device to the CPU (status) 
• I/O read – data transfer from I/O device to the CPU (data) 
• Memory write – data transfer from CPU to memory (data) 
 



����������������������������� 

If the CPU is not doing anything else while waiting for the data to be ready, then data 
transfer speeds of 40 kHz are possible. In this case, the CPU is tied up completely (in a single 
task operating system) while executing the polling loop and is doing nothing useful while 
waiting for the data to become ready. 

Should any additional processing be required, this must be inserted in the polling loop, 
further reducing the sampling rate. 

Interrupt I/O assumes that the I/O device is capable of notifying the CPU that data is ready 
by driving its corresponding interrupt line active (see Operation of interrupts, p. 71). 

The CPU no longer wastes time by waiting for data to become ready and is free to execute 
other programs in the foreground.   

However, when interrupted, the minimum functions the CPU is required to perform (within 
the interrupt service routine) are as follows: 

• I/O read – data transfer from I/O device to the CPU (data)  
• Memory write – data transfer from CPU to memory (data) 
 

It would appear that the interrupt driven I/O approach should be faster as this requires fewer 
I/O bus cycles to perform the data transfer. This, however, does not take into account the 
hardware delays in signaling and acknowledging an interrupt (see Operation of interrupts, p. 
71) and the overheads in servicing an interrupt (saving registers, etc), which can be quite 
significant. Further to this, is the fact that even if an interrupt occurs at the start of the CPU 
instruction cycle, it must wait until the instruction has been executed before being serviced. 

In fact, interrupt driven I/O is significantly slower (about half the speed) than polled I/O for 
these very reasons. 

Direct memory access (DMA) represents the greatest improvement in both the speed of 
data transfer (100 kHz) and the amount of data that can be transferred without CPU 
intervention (32 k word samples). In much the same way, that an I/O device’s interrupt line 
informs the CPU that data is ready, the I/O device informs the DMA controllers that data is 
ready by asserting its DRQx line (see Operation of DMA, p. 76). 

Once the CPU releases the bus, the transfer process is totally transparent to the CPU. In 
fact, the CPU may still operate at full throughput, if it has local high-speed cache memory, 
from which it can execute, and none of the instructions reference anything not already in the 
cache. If this happens, then the CPU must wait until the DMA cycle is finished. Caches are 
common on 386DX and 486 machines. 

��)
 ������


There are three main classifications of memory used in PC systems, called base memory, 
expanded memory and extended memory. They are explained below. 

4.7.1 Base memory 
The memory from address 0 up to either the amount of memory installed in the computer or 
address FFFFFh (that is, up to a total of 1 MB) is called base memory. The first 640 kB of 
this is RAM and is usually used by the operating system and application programs. The latter 
384 kB of address space is reserved; it is used for the BIOS ROM and other adapter ROMs, 
display adapter memory, other adapter memory, and expanded memory (see below). This, 
and the first 64 kB of extended memory (see below), is sometimes called high memory. A 
system may have the ability to map physical memory into the spaces in high memory not 
used by any device in the computer.  This memory may then be used by some applications. 



��������������	����
����
������������
���������������������������
���
�

4.7.2 Expanded memory system (EMS) 
Early processors (the 8086/8088) and all PC processors running in real mode are limited to a 
memory space of 1 MB because only the first 20 address lines are available. (The same holds 
for DOS, being a 16-bit operating system.) To make more memory available for applications, 
a scheme was developed by Lotus, Intel, and Microsoft called expanded memory (LIM EMS 
4.0 is a common version). In hardware, a second linear array of memory, called the logical 
expanded memory is designed into a system. This may be up to 32 MB in size. A block of 
memory space is then set aside in the high memory area (normally 64 kB) and divided into 
four separate pages of 16 kB each. This acts as a window into the expanded memory. Thus, 
four pages of the actual expanded memory are accessible at any one time through the window 
in high memory. These windows are called page frames. The required portion of expanded 
memory is mapped into the page frame through registers in the computer’s I/O space. 
 

1024k

Page Frame area for
Expanded Memory

Access
(four 16k pages)

Application Space

Logical Page (16k)

Program accesses data
by using a Far Pointer

to high memory

Physical Memory

960k

786k

640k

256k

0k

Total Installed
Expanded Memory

Logical Memory
Bank-

Switching
Registers

Window size depends
on EMM version and
hardware installed

Max to 32 Mbytes

 
 
Figure 4.16 
Organization of expanded memory 

The management of the memory is handled by an operating system extension called the 
expanded memory manager (EMM), normally installed at system startup. Application pro-
grams use the expanded memory for data. It is not usually possible to place program code in 
EMS. The application program communicates with the EMM via software interrupt 67h and 
accesses the memory via a far pointer into the page frame. 

The EMM has two main sections: 
• The driver, which has some of the characteristics of a real device driver, and 

includes initialization and output status functions. 
• The manager, which acts as an interface between application software and the 

expanded memory hardware. 
 

The EMM provides the following services: 
• Hardware and software module status  
• Allocation and de-allocation of EMS pages  
• Mapping of logical pages into the physical frame  



����������������������������� 

• Support for multitasking operating systems  
• Diagnostic routines 
 

For compatibility with different types of hardware (and EMM software revisions), app-
lications should communicate with the EMM via the assigned software interrupt. If memory 
is acquired, used, and released via the EMM, other programs will also be able to make use of 
the memory. 

The advantage of EMS is that it provides additional data memory to DOS and 8088-type 
computers.  

The limitations of EMS are: 
• It requires special hardware and software drivers to operate. 
• It cannot execute programs from EMS; it is used for data storage only. For ex-

ample, in a DOS system with 32 kB of expanded memory and over 1 MB of base 
and extended memory, the maximum executable program size (without using disk 
overlays) is the DOS 640 kB limit, less the amount of memory used by DOS and 
other installed drivers. 

• Much slower access time than linear base and extended memory. 
• Programs cannot access EMS directly; they must go via the memory manager and 

this results in more complex code. 

4.7.3 Extended memory (XMS) 
Extended memory is the physical linear memory found above the 1 MB mark. 80286 and 
80386SX processors can address up to 16 MB of base and XMS while 80386DX and 80486 
processors can address up to 4 GB of this type of memory. XMS is memory addressed 
directly by the processor (and hence the application program) and is therefore simpler, 
quicker, and more efficient. Extended memory is only available as normal application mem-
ory when the processor is in protected mode; it follows that only 32-bit protected mode op-
erating systems and extensions - such as OS/2, UNIX and MS-Windows, but not DOS – can 
make this memory available to programs. 

4.7.4 Expansion memory hardware 
All systems support a certain amount of memory on the main board. On most PCs, eight 
SIMM (single in-line memory module) sockets are standard. Each socket usually accepts 256 
kB, 1 MB, 4 MB SIMMs and higher. Additional memory may be added on using an 
expansion card in the I/O channel. Some system boards provide access to the high-speed local 
processor bus with additional proprietary memory board slots. On 80386 systems and higher, 
memory may be configured dynamically in software as XMS or EMS, as is needed by 
applications. Main board memory has a shorter access time than memory on add-on boards; 
these in turn have much shorter time than memory attached to the I/O channel. 

��*
 �+����	��
,��
���������
��"�(
��"�(
 -�
���
 .�
,���


4.8.1 ISA bus 
One of the primary reasons for the success of the first IBM personal computer (PC) was its 
‘open system’ design. IBM encouraged the development of compatible add-on products by 
third party manufacturers by releasing details of its 8-bit expansion bus. This bus formed the 
basis of the industry standard architecture (ISA) bus. 



���������������	����
����
������������
���������������������������
���
�

The IBM PC and early versions of the IBM XT model of personal computer were based on 
the 8-bit, 20 address-line 8088 CPU running at 4.77 MHz. In later versions of the XT, some 
manufacturers also changed the microprocessor to the 16-bit 8086. In all these machines, the 
expansion bus remained the same, operating at the CPU clock frequency of 4.77 MHz. 

With the introduction of the Intel 80286 (‘286’) 16-bit microprocessor, IBM released the 
PC AT. To accommodate this 16-bit bus architecture, the 8-bit ISA slot was extended to the 
16-bit ISA slot with the addition of eight extra data lines, four additional address lines, extra 
interrupt and DMA channels and various other control signals. 

To allow backward compatibility with existing expansion cards, IBM kept the original 62-
pin connector intact (the one closest to the rear of the expansion card), and added an extra 36-
pin connector to accommodate the new signal, data and address lines. (For connector pin-outs 
etc, refer to the reference text ‘PC Instrumentation for the 90s.’) 

With the release of the PC AT also came an increase in CPU speed and subsequent 
increases in ISA bus speed, originally to 6 MHz and finally to 8 MHz. 

When IBM decided to define the maximum ISA bus speed at 8 MHz, leading manu-
facturers of expansion boards began utilizing only the ICs with access times required to meet 
the timing specifications of an 8 MHz ISA bus. Before long, however, AT clone manu-
facturers were soon producing 286 systems with CPU clock speeds of 10, 12, 16, 20, and    
25 MHz. This led to backward compatibility problems between the faster CPUs and the many 
slower expansion boards already in existence. 

At this time the ISA expansion bus changed from a local bus to a translated (or split bus) 
bus slot, whereby the CPU or local bus signals were buffered and the memory, I/O and DMA 
bus cycles slowed down to meet the 8 MHz ISA bus limit. This ‘slowing down’ was achieved 
by adding ‘wait states’ to the normal bus cycles, a ‘wait state’ being the condition where all 
bus lines remain in their current state for another full bus clock cycle. 

The 16-bit ISA bus is an extension of the 8-bit I/O bus of the original PC and PC XT.  They 
had between five and eight slots each, with a 62-way connector for plug-in cards. ISA 
extended the slots with a second connector, adding 32 more signal lines. (While XT cards are 
generally compatible with ISA computers, XT systems have become less common nowadays 
and will not be discussed.) 

The descriptions of the ISA signals are based on the EISA specification, revision 3.12, 
which includes the ISA specification. Unless specifically noted, the acronym ISA refers to the 
part of the EISA specification that deals with the ISA bus. Not all PC systems comply totally 
with the specification but they all comply, to some degree. Any adapter board that complies 
with the specification has a very good chance of working correctly even in systems that do 
not comply exhaustively with the specification. 

A common misunderstanding regarding PC specifications concerns the term clock speed.  
In modern PCs the CPU (or system) clock speed, or to use the more correct term clock 
frequency, differs from that of the I/O bus clock. The CPU clock speed is generally 30 to     
50 MHz while the bus clock speed is 8 to 12 MHz. The compatibility of expansion cards is 
not dependent on the CPU clock but on the I/O clock (together with DMA clock and I/O 
cycle timing). ISA specifies the bus clock (BCLK) to have a frequency between 8.333 MHz 
and 4 MHz with a duty cycle of 50%, but many PCs have bus clocks with a higher frequency.  
10 MHz and 12 MHz are common while I/O clocks can be as high as 13.7 MHz. 

A problem that sometimes occurs when connecting an interface to the PC bus concerns the 
matching of the PC bus cycle with that of the interface design.  For example, the interface 
board may operate at a lower speed than that provided for by the PC bus cycle.  Lowering the 
PC bus cycle to that of the hardware interface can solve the problem.  If the bus cycle is four 
clock cycles in length, a READY bus signal (derived from the interface card) tells the CPU to 



������������������������������ 

add an additional one or more WAIT states to the bus cycle, thus ensuring a match of the data 
rates between the PC bus and the hardware interface. 

Many systems also allow the bus and DMA clock (and possibly other system parameters 
such as default number of I/O wait states) to be programmed within the CMOS setup. These 
can then be set for the highest speed/lowest number of wait states, etc, that is still supported 
by the slowest board in the system. 

ISA signal descriptions 
Some of the terms and conventions used in the following sections are described in the 
following table. 

 
Bus master An expansion board that is capable of taking over the 

bus and running its own bus cycles on it. Bus masters 
use a DMA channel to gain access to the bus. 

Command 
cycle/bus 
cycle 

The sequence of events (or bus clock periods) that 
make up a complete cycle on the bus. Usually one 
piece of data is transferred per bus cycle. 

Command 
signals 

The bus signals that provide instructions to the 
expansion board, for example, the Read and Write 
signals. 

DMA cycle A bus cycle controlled by the DMA controller (not 
involving the CPU) in which data is transferred directly 
to and from memory. 

Slave Used to refer to an ISA expansion board that responds 
to bus signals directed at it. 

Standard 
cycle 

For each type of cycle (e.g. 8-bit I/O-read of 16-bit 
memory-write etc), the default type of cycle the system 
board runs, is called a standard cycle. Adapter boards 
may modify standard cycles. 

/ Active Low. The symbol P preceding any signal 
indicates that the signal is active when it is in the low 
state. 

D[…] Bits on the data bus. 
LA[...] Latchable addresses. 
SA[...] Address lines. 

 
Table 4.3 
Some ISA bus terminology 

Figure 4.17 tabulates the ISA signal mnemonics, pin locations, names and types. Each 
signal is then described fully. 

 



���������������	����
����
������������
���������������������������
���
�

 
 
Figure 4.17 
ISA signal mnemonics, signal directions and pin locations 

The ISA signals are divided into four groups according to their function: 
• Address and data bus signal group 
• Data transfer control signal group 
• Bus arbitration signal group 
• Utility signal group 

Address and data bus signal group 
This group contains the signal lines that are used to address memory and I/O devices and the 
signal lines used to transfer the actual data. 

D[7..0] 
D[7..0] are the low eight bits of the 16-bit bi-directional data bus, used to transmit data 
between the microprocessor, memory and I/O ports.  During CPU-initiated write bus cycles, 
the CPU data is valid on these lines at the trailing edge of /MWTC, /SMWTC and /IOWC 
and may be latched using this edge. During CPU read cycles, the expansion device must drive 
these data lines with its data before the rising edge of /MRTC, /SMRTC and /IORC.  During 



�����������������������������	 

DMA cycles, data is transferred directly from the I/O device to memory (or vice versa) on the 
data lines while the processor is disconnected from them. The DMA controller drives the 
control lines in this case. Bus masters may also take control of these lines. 

D[15..8] 
D[15..8] are the high eight bits of the 16-bit bi-directional data bus.  They are similar to the 
lower eight data lines, D[7..0].  8-bit wide transfers must use D[7..O]. If the currently running 
software requests a 16-bit transfer from an 8-bit device, the system board automatically 
converts it into two 8-bit cycles on D[7..O]. Adapters capable of 16-bit transfers must 
indicate this using /M16 or /IO16 during cycles addressed to them or the system board will 
convert the instruction into two 8-bit instructions. /SBHE (explained later), is asserted by the 
system board during 16-bit cycles. 

LA[23..17] 
The LA17 to LA23 (latchable address) lines form part of the latchable address bus.  (The 
remaining lines of the latchable address bus, LA[16..2] and LA[31..24] are wired to the EISA 
connector and are not available in ISA systems. SA[19..0] must be used instead.) 

LA16 to LA23 are unlatched and, if required for the whole bus cycle, must be latched by 
the addressed slave. During standard cycles, they are valid during the active time of the 
BALE signal (explained later) and remain valid for at least ½ BCLK period after the com-
mand signals are asserted. 

During DMA or ISA bus master cycles, LA[23..17] are valid at least one BCLK before the 
command signals are asserted. They may be driven by an expansion board acting as a bus 
master. These lines may be latched with the trailing edge of BALE. 

These address lines are provided in this way because they are pipelined from one cycle to 
the next, and to reduce address delay when they are used to decode a block of bus-attached 
memory. 

SA[19..0] 
Address lines SA0 through SA19 are used to address system bus I/O and memory devices.  
They form the low-order 20 bits of the 32-bit address bus. (However, only 24 of the 32 
address lines are normally available in ISA systems.) 

On normal cycles SA0 to SA 19 are driven onto the bus while BALE is high and they are 
latched by the system board on the trailing edge of BALE and are therefore valid throughout 
the bus command cycle. 

During DMA and 16-bit ISA bus master cycles, they are driven by the DMA logic and bus 
master respectively. They should be valid one BCLK before the command signals and 
normally stay valid one BCLK after the command signals end. 

With 20 address lines it is possible to address 1 MB of memory, but not all address 
locations are available. Base system memory, system ROMs and display memory all use 
addresses in this range. 

The processor, using the IN and OUT instructions, addresses I/O devices with lines SA0 
through SA15, while SA16 through SA19 are not used and are held inactive. Most PC I/O 
devices only decode the first ten address lines, (SA0 to SA9, which correspond to I/O 
addresses 0h to 3FFh) so care must be taken when addressing I/O devices with SA10 to 
SA15. 

/SBHE 
/SBHE (system bus high enable) is an output-only signal. When low, it indicates to the 
expansion board that the present cycle expects to transfer data on the high half of the D[15..0] 



��
������������	����
����
������������
���������������������������
���
�

data bus.  An example of this happens when the expansion board had previously indicated to 
the system board that it is capable of transferring 16-bit data with the /IO16 or /M16 signals. 

The type of bus cycle can be decoded from /SBHE and SA0 as follows: 
 

������ ���� ����������

/
 /
 
0�%%

&1,	�
��������


/
 

 2����
,���
��������
��
�3
$��*4




 /
 5�6��
,���
��������
��
�3)��/4




 

 ��7�%	�
���,	���	��


 
Table 4.4 
Decoding bus cycle type from  /SBHE and SA0 

AEN 
When low, AEN (address enable) indicates that an I/O slave may respond to addresses and 
I/O commands on the bus. It is an output signal issued by the DMA control logic during 
DMA cycles which, when asserted (high), is used to prevent I/O slaves from misinterpreting 
DMA cycles as I/O cycles. The system board also uses this signal to disable the processor’s 
address, data, and control lines from the I/O bus during DMA cycles. 

Data transfer control signal group 
This group contains signals that are used to control data transfer cycles on the bus. 

BCLK 
BCLK (bus clock) is provided to synchronize events with the main system clock. According 
to EISA specifications, BCLK should operate at a frequency between 8.333 MHz and 4 MHz, 
with a normal duty cycle of 50%. However, most ISA systems have a BCLK frequency of     
8 MHz to 12 MHz. (The original XT had a high time of 66⅔% and a low time of 33⅓% and a 
frequency of 4.77 MHz.) BCLK is driven by the system board. Its period is sometimes 
extended for synchronization to the main CPU or other system board devices. During bus 
master cycles, the system board extends BCLK only when required to synchronize with main 
memory. Events must be synchronized to BCLK edges without regard to frequency or duty 
cycle. This signal can be used to generate system bus wait states. 

BALE 
When high, BALE (address latch enable) indicates that a valid address is present on the 
latchable address lines LA17 to LA23. It goes high before the addresses are valid and falls 
low after they have become valid. If the addresses are needed for the whole cycle, the 
expansion board should latch them with the trailing edge of BALE. This is a good 
synchronization signal when looking at normal bus cycles because it starts at the beginning of 
each bus cycle. It is high (and does not fall low) during DMA or bus master cycles. 

/MRDC 
This signal is asserted by the system board or ISA bus master to indicate that the addressed 
memory slave should drive its data onto the system data bus. This should be done before the 
rising edge of the /MRDC signal to ensure that the receiving device obtains valid data. 



������������������������������ 

During DMA cycles, /MRDC is asserted for read accesses from memory addresses between 
0h and 00FFFFFFh, regardless of the type of memory responding. This allows the /DAK 
selected I/O port to receive the data. (The I/O device should not use /MRDC to decode its I/O 
address.)  /MRDC may be driven by expansion boards acting as ISA bus masters. 

/SMRDC 
This memory-read signal is derived from /MRDC and has similar timing; the difference 
between the two is that /SMRDC is only active for addresses between 0h and 000FFFFFh 
(that is, in the first megabyte of memory). 

/MWTC 
This signal is asserted by the system board or ISA bus master to indicate that the addressed 
memory slave may latch data from the system data bus.  The data is valid at the rising edge of 
the /MWTC signal and maybe latched at this time.  During DMA cycles, /MWTC is asserted 
for write accesses to memory addresses between 0h and 00FFFFFFh, regardless of the type of 
memory responding. This allows the /DAK selected I/O port to drive the data bus with its 
data. (The I/O device should not use /MWTC to decode its I/O address.) /MWTC may be 
driven by expansion boards acting as ISA bus masters. 

/SMWTC 
This memory-write signal is derived from /MWTC and has similar timing; the difference 
between the two is that /SMWTC is only active for addresses between 0h and 000FFFFFh 
(that is, in the first megabyte of memory). 

/IORC 
The I/O-read signal is asserted by the system board or ISA bus master to indicate that the 
addressed I/O slave should drive its data onto the system data bus. This should be done after 
/IORC goes low, and the data must be held valid until after the rising edge of the /IORC 
signal to ensure the receiving device obtains valid data. During DMA cycles, the address bus 
does not contain an I/O port address; it contains the memory address to which the I/O port 
data will be transferred. The I/O port is selected, not by an address decode, but by a /DAK 
signal. 

/IOWC 
The I/O-write signal is asserted by the system board, or ISA bus master, to indicate that the 
addressed I/O slave may latch data from the system data bus. This should be done at the 
rising edge of /IOWC to ensure the receiving device obtains valid data. The system board, 
DMA device or bus master must drive the data bus before asserting /IOWC. During DMA 
cycles, the address bus does not contain an I/O port address; it contains the memory address 
from which the I/O port will latch data. The I/O port is selected, not by an address decode, 
but by a /DAK signal. 

CHRDY 
An expansion device may use CHRDY (CHannel ReaDY) to lengthen a bus cycle from the 
default time.  This allows devices with slow access times also to be attached to the system.  
The slave drives CHRDY low after decoding a valid address and finding a command signal 
(any of the six I/O or memory-read or write signals) asserted.  This lengthens bus cycles by 
an integral number of bus cycles. If CHRDY is low, the command signals remain active at 
least one BCLK period after it goes inactive. CHRDY should be driven low by an open 
collector or tri-state driver and it should never be driven high. It should not be held low for 
more than 2.5 µs (or about 10 BCLK periods, whichever is less). 



���������������	����
����
������������
���������������������������
���
�

/NOWS 
The /NOWS (NO wait state) signal may be driven by a memory device after it has decoded 
its address and command to indicate that the remaining BCLK periods in the present cycle are 
not required. This must happen before the falling (back) edge of BCLK to be recognized in 
that BCLK period. /NOWS should be driven low by an open collector or tri-state device 
capable of sinking 20 mA and never be driven high. A slave should not assert /NOWS and 
CHRDY at the same time. 

/M16 
If the addressed memory is capable of transferring 16-bits of data at once on the D[15..0] data 
lines, it may assert /M16, after decoding a valid address. This causes the system board to run 
a 3-BCLK memory cycle (that is, with only one wait state). /M16 should be driven low by an 
open collector or tri-state device capable of sinking 20 mA and never be driven high. 

/IO16 
If the addressed I/O port is capable of transferring 16-bits of data at once on the D[15..0] data 
lines, it may assert /IO16, after decoding a valid address. This causes the system board to run 
a 3-BCLK I/O cycle (that is, with only one wait state). /IO16 should be driven low by an 
open collector or tri-state device capable of sinking 20 mA and never be driven high. 

Bus arbitration signal group 
These signals are used to arbitrate between devices and the system board for control of the 
bus. 

DRQ[7..5] and DRQ[3..0] 
The DRQ (DMA request) lines are used to request a DMA service from the DMA sub-
system, or for a 16-bit ISA bus master to request access to the system bus. The request is 
made when the DRQ line is driven high and may be asserted asynchronously. 

The requesting device must hold its DRQ line active until the system board responds by 
asserting the corresponding /DAK line. For demand mode DMA memory-read I/O-write 
cycles, DRQx is sampled on the rising edge of BCLK, one BCLK from the end of the present 
cycle (the rising edge of /IOWC). 

For demand mode memory-write I/O-read cycles, DRQx is sampled on the rising edge of 
BCLK, 1½ BCLKs from the end of the cycle (the rising edge of /IORC). 

For 16-bit ISA bus masters, DRQx is sampled on the rising edge of BCLK, two BCLKs 
before the system board asserts DAKx. The trailing edge of DRQx must meet the setup and 
hold time to the sampling point for proper system operation. The ROM BIOS initializes the 
DMA controller so that DRQ0 has the highest priority and DRQ7 the lowest. Care must be 
taken to deactivate the DRQ line without delay, otherwise more than one cycle may be 
granted. The corresponding /DAK is typically used to reset the DRQ line. 

/DAK[7..5] and /DAK[3..0] 
The system board asserts a DMA channel’s /DAK (DMA acknowledge) signal low to 
indicate that the channel has been granted the bus.  The DMA device is selected if it finds its 
/DAK signal, together with either /IORC or /IOWC, asserted.  The DMA controller then takes 
control of the bus and proceeds with the DMA cycle.  /DAKx is also asserted to acknowledge 
granting the bus to a 16-bit ISA bus master. The bus master must then assert /MASTER16 if 
it finds its /DAK asserted and proceed with its cycle. Afterwards, the bus master must float 
the address and control lines and make /MASTER16 inactive before the system board 
disasserts the /DAK line. 



������������������������������ 

T-C 
T-C (terminal count) is a bi-directional signal acting in one of two modes, depending on the 
programming of the DMA channel. 

In output mode, the system board asserts T-C to indicate that a DMA channel’s word count 
has reached its terminal value. This happens when the decrementing count rolls over from 0 
to FFFFFFh. T-C is only asserted when the corresponding channel’s /DAK line is asserted, so 
that the DMA device can condition T-C with its /DAK signal to determine if the DMA 
transfer has been completed. 

In input mode, a DMA device to stop a DMA transfer can use T-C.  T-C is sampled by the 
system board when /IORC or /IOWC is asserted. If T-C is found asserted, the transfer is 
terminated, and if the channel is programmed for auto-initialize, the transfer starts at the 
beginning. 

/MASTER16 
This signal allows bus master cards to take over the system bus. A master asserts 
/MASTER16 when it receives a /DAK signal from a DRQ on its DMA channel. Asserting 
/MASTER cancels the DMA operation and tri-states the system address, data and control 
signals. This allows the bus master card to control and drive devices attached to the system 
bus as well as memory. It must obey all the timing requirements of the bus devices and 
memory, and return control to the processor (that is, release the bus) within 64 BCLK periods 
(nominally 8 µs). 

/REFRESH B19 
When low, /REFRESH indicates that a refresh cycle is in progress. /REFRESH causes 
SA[15..0] (or LA[15..2]) to drive the row address inputs of all DRAM banks so that when 
/MRDC is asserted, the entire system memory is refreshed at one time. 

Utility signal group 

OSC 
OSC is a clock signal for use in general timing applications. Its frequency is 14.31818 MHz 
(roughly 70 ns) with a duty cycle of 50%. 

RESDRV 
RESDRV (reset driver) is an output signal, which, when asserted, produces a hardware-reset 
for devices attached to the bus. It is also asserted during power-up. All devices that can 
prevent operation of the CPU, memory or system board I/O must use RESDRV for hardware 
reset. When RESDRV is asserted, these devices must float all outputs that drive the bus.  
Examples of expansion board devices that must sample and use RESDRV are slaves that 
insert wait states, devices that require software initialization and DMA devices. 

IRQ[15..14], IRQ[12..9], IRQ[7..3] 
The input-only interrupt lines are used by expansion boards to interrupt the CPU to request 
some service. An interrupt is recognized when the IRQ line goes from low to high and stays 
high until the corresponding interrupt is acknowledged. This implies that it is not possible for 
more than one device to use an interrupt line at the same time, reliably. The interrupt lines are 
pulled high by the system board and, when floated, are guaranteed to be high after 500 ns.  
Interrupt routines must reset the device’s interrupt latch at least 500 ns before issuing an end-
of-interrupt command to the interrupt controller, to re-enable interrupts on that line. Missing 



���������������	����
����
������������
���������������������������
���
�

interrupt lines (1RQ13, 8, 2, 1 and 0) are used by the system board and are not available in 
the bus. 

/IOCHK 
An expansion board can assert /IOCHK (I/O channel check) to indicate that a serious error 
has occurred. Assertion of /IOCHK causes an NMI (non-maskable interrupt) to the CPU if 
Port 61h bit 3 is 0 and if NMIs are enabled with Port A0h. Parity errors and uncorrectable 
hardware errors are examples of where expansion boards might assert /IOCHK. 

4.8.2 Microchannel bus 
In 1986 IBM included the newly released Intel 32-bit 80386 (‘386’) microprocessor into a 
new family of PC’s called the PS/2 systems. At the same time, and rather unexpectedly, IBM 
introduced with this family of machines a new and proprietary expansion bus called the 
microchannel architecture (MCA) bus. 

This bus provided many enhancements, which included: 
• Bus mastering. 
• Burst mode data transfers (where data is transferred a predefined block size at a 

time). 
• Bus arbitration, which permitted up to eight processors and eight other devices, 

such as DMA controllers, to share the single data bus without interfering with 
each other. 

 
However, the MCA bus was not compatible at all with ISA bus expansion boards, the most 

obvious difference being the change in connector size, layout and pin spacing (the MCA 
connector is much smaller, pin configurations were rearranged and pin spacing decreased to 
0.050"). Moreover, there were two versions of the MCA bus slot (a 16-bit version and 32-bit 
version), each with different pinouts. 

IBM’s refusal to co-operate with the industry to create just one standard (development of 
the EISA standard bus was already in progress), has meant that this bus was largely shunned 
from the beginning. MCA systems have achieved limited success in the data acquisition 
environment, due mainly to the incompatible expansion bus and the availability of high 
performance, low cost, easily expandable ISA machines. 

4.8.3 EISA bus 
The introduction of the Intel 32-bit 80386 (‘386’) microprocessor marked the first departure 
by the industry from following developments in the IBM PC system architectures. While 
IBM produced the PS/2 family of machines incorporating the MCA bus, the rest of the 
industry produced 386-based ISA machines operating at 16, 20, 25, 33 and 40 MHz CPU 
speeds. Initially these were AT clones with 386 CPUs, the split bus architecture allowing the 
expansion bus to continue to operate at around 8 MHz, thus maintaining ISA compatibility, 
and access to the increasing range of ISA compatible expansion cards. 

In 1988, and after almost two years of meetings, nine manufacturers collaborated to 
produce the extended industry standard architecture (EISA) bus specification, in direct 
opposition to IBM's MCA bus. This published standard encompassed all of the ISA features, 
almost all of the MCA enhancements and added some new features while maintaining the 
backward compatibility with existing expansion boards. The EISA bus is a full 32-bit data 
and address bus.  

 



������������������������������ 

Some of its features include: 
• True bus master capabilities. 
• Additional DMA transfer modes, such as block demand or block burst mode. 
• Ability to share interrupt lines between devices. 
• Automatic expansion board configuration so as to achieve a conflict free system. 
 

While the speed of the EISA slot is still limited to 8 MHz because of the ISA compatibility 
restriction, the increased bus-width allows a much higher data transfer rate (33 MHz). In 
burst mode, speeds up to 40 MHz can be achieved. Unfortunately, benchmarks show that 
EISA expansion cards are no faster than their ISA equivalents, largely due to the fact that few 
EISA peripherals make use of the extra speed features such as bus mastering. 

4.8.4 The PCI, compactPCI, and PXI bus  
In the spring of 1991 Intel Corporation began working on the PCI bus as an internal project.  
Intel engineers were concerned that the existing input / output (I/O) bus bandwidths were not 
keeping up with current CPU speeds and were falling even farther behind as the new 
generations of CPU’s (486 / Pentiums) were becoming available. 

The ISA bus was introduced by IBM in 1981 and was upgraded to 16 bit with the 
introduction of the AT in 1984. The ISA originally ran at 4.77 MHz. The top speed was         
8 MHz. In 1987, the MCA (micro channel for the PS/2) was introduced. This bus didn't last 
long (neither did the PS/2). The MCA was a 16- or 32-bit bus that ran at 10 MHz. The EISA 
bus was presented in 1989. It was a 32-bit, 8MHz bus with the big advantage of more pin 
outs for larger cards. In 1992 the CPU VL bus was developed. It was a 32-bit bus running at 
33 MHz.  In 1993 the PCI was introduced.  At first, it ran at the same 33 MHz, but soon the 
speeds increased to 100 MHz on 3.3 volt CPUs. The PCI bus can use either 32- or 64-bit bus 
lines. 

 
Year Bus Bits Frequency 
1981 IBM PC ISA 8 4.77 
1984 IBM AT ISA 16 6/8 
1987 MCA (PS/2) 16/32 10 
1989 EISA 32 8 
1992 VL 32 33 
1993 PCI 32 33 
1995 PCI 32/64 33/66 
1996 PCI 32/64 100 
1998 PXI same as PCI  

 
Table 4.5  
Growth table of the PC bus system 

The PCI or (Personal Computer Interface bus) is a relatively new addition to the PC 
motherboard. As time goes on it seems that personal computers have more and more PCI 
slots and less and less ISA or EISA SLOTS. Very soon all computers will have PCI slots but 
no ISA or EISA slots. Is this one of those transitional things that we have to put up with in an 
ever-changing industry, or is the PCI that much better? The answer to that question is that the 
PCI bus is that much better. Legacy bus systems such as the ISA and EISA were good in the 
days when only one application was running at a time. Now that the PC can run more than 



���������������	����
����
������������
���������������������������
���
�

one application at a time, it is necessary to have a multi-card bus system. The PCI bus does 
this by running at faster clock rates then the legacy buses and by temporarily releasing the 
bus, therefore allowing other cards to have a chance to transmit or receive data from the CPU. 

Card size is also a big advantage of the PCI bus. The fingers on the PCI bus are smaller and 
more numerous. This makes the average PCI card the same size as a legacy ISA card. With 
most electronic PCBs going to surface mount components, smaller PCI cards can have more 
functions than huge EISA cards. This will be a benefit for the manufacture (reduction in cost) 
and for the consumer (more functions for the same or smaller price). Another spin off of the 
PCI bus is better plug and play. 

The PCI local bus is a high-performance bus that provides a processor-independent data 
path between the CPU and high-speed peripherals. PCI is a robust interconnect mechanism 
designed specifically to accommodate multiple high performance peripherals for graphics, 
full motion video, SCSI, LAN, etc.  

The PCI bus is not a local bus but an intermediate bus. It talks to the CPU bus (local bus) 
by way of a CPU to PCI Bridge. This allows the CPU to talk to host memory, or the cache, 
over a very fast and short local bus, while the PCI bus connected devices (and even ISA bus 
devices) do their own thing. A bridge is used as a buffer / transmitter / receiver between the 
CPU bus (local bus) and the PCI bus. The PCI bus is really a multi-bus system with devices 
being allocated resources on each PCI bus. If legacy bus systems are present, and as of this 
writing they usually are, the legacy devices run on their own legacy bus not on a PCI bus.  

The legacy bus is allocated resources by IRQ and DMA control chips in conjunction with 
the PCI bus system. The PCI devices still can use IRQs and DMA but in a different way than 
legacy devices. The PCI bus has its own internal interrupts called INT#…      

Plug and play (or is that plug and pray) is the ability of the computer to recognize a new 
card has been plugged into the bus. On legacy cards (ISA and EISA), recognition for PnP 
(plug and play) was difficult. The ISA system cannot produce specific information about a 
card, so the BIOS has to isolate each one and give it a temporary handle so its requirements 
can be read.  Resources are allocated only when all of the cards have been dealt with.  All 
PnP cards are isolated and checked, but only those needed to boot the machine are activated.  
Another way is for the information to be stored in the registry and read on boot up. All PnP 
devices are configured and then activated on boot up.    

It must be remembered that not all PCI cards are PnP, but because they have the resources 
to give the BIOS everything it needs, PCI cards are the perfect hardware vehicles for PnP.  To 
do plug and play correctly it is necessary to have PnP compliant BIOS, PnP cards, and a PnP 
operating system. This will give the best PnP performance. Many people have had problems 
because one of these PnP systems was not truly compliant. Another problem was that the PnP 
devices interacted with each other and caused strange results. This was because the devices 
were not truly multi-functional.       

Multi-functional cards are able run at the same time (apparently) without interfering with 
each other; sometimes this is accomplished by using a PCI bus master. The PCI bus master 
can allocate time for each card to access the bus. The bus master can define how long the PCI 
bus will delay a transaction between the given PCI slot and the ISA bus. This delay is 
accomplished by using a latency timer command.  

The PCI also uses an internal interrupt system such as INT#1, INT#2, INT#3 etc. This 
interrupt system is an internal (to the PCI bus) interrupt system. It has nothing directly to do 
with the IRQ system, but can be mapped to if the card concerned needs it. Any available IRQ 
can be mapped to an INT#. The use of this INT# system means the PCI cards can be accessed 
without the use of IRQs. The card designated as the master can interrupt the other PCI 
(slaves) as needed. The INT# PCI cards are usually configured as edge triggered as opposed 
to ISA which is usually level triggered IRQ.    



������������������������������ 

 

 
Figure 4.18 
PCI structure 

In 1998, the compactPCI and PXI bus were developed to combine the attributes of the PC’s 
PCI bus with the industrial card connection system of the VME. The VME bus had been used 
in various forms for many years as an industrial bus rack for mounting electronic PCBs. The 
PCI bus is a very fast and easy way of connecting the computer to the outside world. By 
combining the PCI with the VME the best of both worlds was accomplished. Instead of 
having to open the PC and insert a PCI card, the user can just slide the card into the front of 
the chassis. It uses a 5-row 2 mm-pitch connector with impedance-matched pins and sockets. 
The integrated shielding system doubles the bus card’s capacity from four to eight. The PXI 
version of the compactPCI has extra features that the basic compactPCI does not. These 
include timing and triggering functions so multiple boards can perform synchronous data 
acquisition, and the ability of one card to trigger another without the intervention of the 
system.  



���������������	����
����
������������
���������������������������
���
�

��8
 "��	�%
������	���	���


The need for PCs to exchange data with remote instruments and distributed or stand-alone 
data acquisition systems over long distances over the existing telephone network and to 
function as intelligent terminals, has furthered the development of various serial 
communications adapters.  A standard PC has two asynchronous serial communications ports 
called COM1 and COM2.  DOS supports up to four such ports, and some PCs may also have 
a COM3 and COM4. 

The electrical characteristics of the ports conform to published Standard RS232 and they 
operate at speeds from 50 bps to over 115.2 kps. IBM compatible PCs are typically fitted 
with an RS-232 serial communications card with two serial ports. 

4.9.1 Standard settings 
I/O address of the serial ports: 

Serial port 1 (COM1) 03F8 Hex  
Serial port 2 (COM2) 02F8 Hex 
 

Where additional serial port hardware is fitted these ports have the following settings: 
Serial port 3 (COM1) O3E8 Hex  
Serial port 4 (COM2) 02E8 Hex 
 

Hardware interrupts: 
Serial port 1 IRQ 4  
Serial port 2 IRQ 3 
 

For communication over an analog telephone line, a modem is connected to a serial port, or 
it may be incorporated in an add-on board.  A modem converts the digital data generated by 
the PC into a signal that can be transmitted over an analog line. Some modems incorporate 
data compression and error correction techniques to achieve much higher transmission rates 
than the bandwidth of a telephone line would normally support. 

The COM ports are also used to attach terminals to multitasking, multi-user environments 
such as UNIX; this often requires multiple COM ports. Add-on boards are available which 
support two or four COM ports; further COM ports may be added by using multiple 8-port 
COM boards. DOS will not support COM ports higher than 4, but the hardware itself is 
exactly the same as that for ports 1 to 4. The additional COM ports appear at different I/O 
channel addresses and may be accessed directly by the application software. 

4.9.2 Intelligent serial ports 
An intelligent serial port is designed to relieve the load on the main CPU of the host PC. It 
typically contains an Intel 80186 microprocessor with read only memory (ROM), containing 
an operating system and some RAM. When the board is initialized, the operating system is 
loaded into the RAM together with any other user programs. There is also dual ported RAM 
on the board for transferring information between the PC CPU and the on-board RAM. The 
80186 then polls each of the serial ports on the board to read for any incoming data or to 
transfer any outgoing data. The user programs contained in the RAM can also pre-process the 
data before it is transferred to the PC system memory. The transfer is accomplished either by 
DMA, which does not use much memory, or by memory-mapping the dual ported RAM into 
PC memory, 64 kBytes of PC system memory. 



�����������������������������	 

��
/
 ��������	��
���9�	:���
��
�9�
�;�
 -


The problems that may need to be considered when interfacing expansion cards to the IBM 
PC vary, depending on whether you are designing a board for a specific purpose or simply 
plugging in an off-the-shelf board that requires configuring. 

While the basic considerations do not change, their complexity varies depending on the 
functions that the expansion board must perform. 

The primary considerations are: 
• Hardware compatibility 

These are the physical requirements such as connector configurations, board 
size, bus loading etc. 

• Addressing considerations 
Whether the expansion board is addressed as part of the PC's memory or I/O 

map, it is obviously important that each address is unique and does not conflict 
with any other used addresses in the PC’s memory. 

• Timing requirements 
The timing of accesses to and from the memory and I/O as well as the system 

board timing for interrupts and DMA are strictly controlled within pre-defined 
limits (this is what makes it a ‘standard’). Consideration of this timing is very 
important since it greatly affects the efficiency of functions that the board must 
perform, and can be affected by the physical hardware factors of the bus itself, the 
speed of the CPU and the speed of the integrated circuits (ICs) used on the 
expansion board. 

 
We will consider these issues here as they relate to an 8-bit 24 line programmable I/O 

control board interfacing to a standard ISA compatible bus.  This is shown in Figure 4.18. 



��
������������	����
����
������������
���������������������������
���
�

 
Figure 4.19  
8-bit 21-line I/O board 

4.10.1 Hardware considerations 

Physical size 
The physical characteristics of the expansion board that must be considered are its physical 
size, and connector size and configuration.  There are two variations of this: the original ISA 
8-bit add on card configuration with a single 62-pin connector (principally designed for the 
PC/XT) and an 8/16 bit version with an additional 36-pin connector (for the PC/AT). 



������������������������������ 

Capacitive loading 
Capacitive loading of the output bus signals is the capacitance that the signal line driver 
circuit sees, and is related to the length of the bus signal lines. As the capacitance is increased 
(with the addition of further expansion cards), the signal can become distorted and delayed, 
affecting critical timing conditions for bus signals. 

Where the capacitive coupling between signal lines is significant, and especially when the 
signal lines are being driven at high frequency, then noise or signal chatter between signal 
lines can also affect the timing of bus signal lines and performance of the bus. 

This is especially true when expansion boxes with a long connection to the PC are fitted 
and there are many cards installed. 

A common engineering practice by manufacturers is to deliberately limit the length of these 
bus signal lines on expansion cards. 

Bus bandwidth is the maximum frequency at which data can be reliably transmitted on the 
bus.  This is related to the transmission line characteristics of each of the bus signal lines, the 
capacitive loading on each signal line and the capacitive coupling between them. 

Although the manufacture of a multitude of IBM clones has meant that bus characteristics 
can vary between manufacturers, a common maximum transmission rate (bus bandwidth) is 
100 MHz. 

Bus loading 
The simple and safe rule here is that the maximum loading presented to any bus signal line 
should not exceed more than 2 LS TTL devices. 

Power supply (VCC) noise 
The frequency of noise that may appear on the power supply is directly related to the 
frequency that an IC changes state, since the power that ICs draw from the power supply 
changes as they change state. 

By decoupling each IC device on the board from its power supply with a 0.1 uF ceramic 
capacitor, the noise being applied back to the supply is greatly reduced.  If this power supply 
noise is not decoupled, then the high frequency power supply changes can be induced into 
other ICs and also capacitively coupled to other important bus signal lines, possibly affecting 
the correct operation of the expansion bus. 

4.10.2 Address decoding 
I/O devices addressed within the memory or I/O address map of the PC must be uniquely 
addressable and must not conflict with other memory or I/O addresses in the system. 

The base address of an I/O device determines where in the computer’s memory or I/O 
address space the computer will find the I/O device and represents the ‘lowest’ address that 
will access this device. This setting must be unique for all I/O devices in the computer and 
cannot lie within an addressable range of any other I/O device.  Memory or I/O locations on 
I/O devices are usually addressed in a linear range, from the base address up. 

The I/O device must correctly decode the address signals, allowing access for only the 
proper addresses.  This is usually performed by a dip switch located on the I/O device. 

The unused locations in the PC’s I/O map are dependent on the type of computer used 
(PC/XT/AT).  

It is up to the user to find an unused area in the PC’s I/O address space, taking into account 
the addresses of all other installed I/O devices. 

To allow greater flexibility, it is common practice for the base address of an I/O device to 
be settable within a large range of I/O addresses. 



���������������	����
����
������������
���������������������������
���
�

Address decoding on the 24-line programmable I/O board is performed by the 74HCT688 
comparator, which compares addresses on the address lines SA[9..2] to the value set by the 
address DIP switch.  Where a switch is open, the comparators ‘P’ input is in the high state, 
pulled high by the ‘pull-up’ resistors connected to the 5 V rail, while a closed switch will 
drive the ‘P’ input low. 

The output of the comparator will be asserted low (active) when: 
• The address lines SA[9..2] at the ‘Q’ inputs correspond exactly to the state of the 

‘P’ inputs, as determined by the switch settings. 
• The AEN bus signal is low. 
 

The AEN (address enable) bus signal is used so that addresses appearing on the bus during 
DMA cycles are not misinterpreted as I/O addresses. It is an output signal that is asserted 
high by the DMA controller logic during DMA cycles and when low, indicates to slave I/O 
devices that they may respond to addresses and I/O commands on the bus. 

Thus the output of the comparator is low when there is a valid address in the board’s 
address range being presented on the bus and a DMA cycle is not in progress.  It is not 
necessarily true however that the I/O device should respond to this address, since there is a 
large number of addresses in the memory address space that would have the same SA[9..2] 
address settings.  The CPU may be performing a ‘memory read’ or ‘memory write’ cycle to 
one of these locations. 

The I/O control signals /IORC and /IOWC are in fact used to differentiate this. 
• The /IORC signal is asserted low during an ‘I/O read’ cycle, to indicate to an 

addressed I/O device that it should drive its data onto the system data bus. The 
data must be held valid by the I/O device after the rising edge of /IORC to ensure 
that valid data is placed on the bus. 

• The /IOWC signal is asserted low during an ‘I/O write’ cycle to indicate to an 
addressed I/O device that data is available on the system data bus. To ensure that 
valid data is received, the I/O device should ‘latch’ the data on the rising edge of 
/IOWC. 

 
For this I/O device the comparator output is used as the chip select for all devices on the 

board and the /IORC and /IOWC control lines to instruct these devices what action to 
perform. 

The base address comparison is performed for address lines SA[9..2] and is independent of 
the two address lines SA1 and SA0, which are used to address the bottom four I/O locations 
from the base address. 

Therefore base addresses may be assigned any location from 0h to 7F8h, on eight byte 
boundaries. 

4.10.3 Timing requirements 
One of the most important aspects of interfacing I/O devices to the I/O expansion bus is 
timing considerations. 

Slow I/O devices 
Sometimes I/O devices, or more particularly the memory and I/O ICs on them, have slower 
access times than would normally be required in an I/O or memory read or write cycle. 



������������������������������ 

This limitation is overcome by the insertion of ‘wait states’ into the read or write cycles, a 
‘wait state’ being the condition where all bus lines remain in their current state for another 
full bus clock (BCLK) cycle. 

Upon decoding a valid address and detecting the assertion of one of the control signals 
(/IORC etc), the I/O device asserts the CHRDY signal low, thus signaling the CPU that a wait 
state is required. The CPU will keep inserting wait states for as long as CHRDY is detected 
as being low at the falling edge of the BCLK cycle. 

Where an I/O device does require wait states to be inserted, there should be enough 
flexibility to allow easy selection of a variable number of wait states. Most commonly, the 
number of wait states is provided by adjustable hardware settings on the I/O device (switches 
or links) with accompanying logic to provide the necessary CHRDY signal.  This flexibility 
is needed, since the faster the PC to which the I/O device is interfaced, the greater the number 
of wait-states that will be required. 

Note: CHRDY should be driven low by an open collector or tri-state driver and never be 
driven high. It should not be held low for more than 2.5 µs or about 10 BCLK periods, 
whichever is less. 

Fast I/O devices 
Alternatively, an I/O device may be very fast and may not need all the time that is taken in a 
normal bus cycle. 

When this is the case, the I/O device must assert the /NOWS (no wait state) signal.  This 
must be detected on the falling edge of BCLK for it to be recognized in that BCLK cycle. 

All the memory and I/O read or write cycles can be shortened, except the 16-bit I/O 
read/write cycle. 

Note: /NOWS should be driven low by an open collector or tri-state driver and never be 
driven high. 

Practical timing considerations 
To determine if our I/O device requires wait states (or in fact if the default number of wait 
states may be reduced) the access times of the ICs being addressed on the device must be 
investigated. 

Referring to the timing diagram of a standard 6 BCLK I/O cycle, we see that the /IORC line 
goes low roughly halfway through T2. This tells the addressed device to drive the bus data 
lines D[7..0] with its data. 

The CPU latches the data present on the bus just before driving the /IORC line high again, 
which occurs at the end of T6. 

The period over which /IORC is low is about 4.5 machine states which, for a 10 MHz 
BCLK with a period of 100 ns, corresponds to a period of 450 ns. 

Taking into account bus delays of 25 ns and allowing a 25 ns setup time for a safe margin 
of error, then the data must be presented to the data bus 400 ns after /IORC goes low. 

There are two further considerations: 
• The access time through the 8255 (access time is the delay between the read line 

going low to valid data on the 8255’s data lines). 
• The propagation delay through the 74LS245 transceiver of about 25 ns (see 

manufacturers’ specification sheets). 
 

Looking at the 8255A data sheet (available in the manufacturer’s data book) we see that the 
read line must be low for 300 ns and the access time is 250 ns (or 200 ns for the faster 
8255A-5 device). 



���������������	����
����
������������
���������������������������
���
�

The write cycle is considered in the same way.  The 8255 data sheet indicates that the write 
pulse width must be 400 ns (or 300 ns for the 8255A), the data must be valid 100 ns before 
the write line goes high and remain valid 30 ns thereafter. 

Therefore, the 8255A-5 device may be comfortably interfaced to the PC expansion bus 
without wait states, but the use of the slower 8255A would be marginal in general even 
though it just meets the timing requirements of this PC. 

This is true for PCs whose BLCK speed does not exceed 10 MHz. In a PC with a 13.7 MHz 
BCLK, and having an I/O cycle with three wait states instead of four, the /IORC strobe is low 
for 3.5 machine states X 73 ns (255 ns). This would not meet the timing requirements of the 
8255A. An additional wait state would be needed by the I/O device in order to use the board 
in this computer. 



5 

��������	
�
�
�
�����������
�	��

���� ����	
���
	��

In recent years, the distinction between separate data acquisition systems and control systems 
has narrowed because an increasing number of real-life systems are designed not only to 
acquire data, but also to act on it. This is true of a wide range of plug-in data acquisition and 
control boards now available. Commonly used multi-purpose plug-in data acquisition boards, 
currently on the market, typically combine all aspects of data acquisition and control. This 
includes analog input circuitry for measuring and converting analog input voltage signals to 
digital format, analog output circuitry for generating analog output voltages from digital 
control signals, counter/timing circuitry and digital I/O interfaces. Depending on the number 
of analog inputs/outputs and digital inputs/outputs required for a particular application, multi-
purpose boards represent the most cost effective and flexible solution for DAQ systems. Also 
available and widely used are plug-in boards that specialize in each of the data acquisition 
and control functions just mentioned.   

Examples of these plug-in boards are: 
• Analog input (A/D) boards 
• Analog output (D/A) boards 
• Digital I/O boards 
• Counter/timer I/O boards 
 

Computer plug-in data acquisition and control boards often represent the lowest cost 
alternative for a complete data acquisition and control system. As they interface directly to 
the host computer’s I/O expansion bus, they are generally compact, and represent the fastest 
method of gathering data and/or changing outputs. These boards are most commonly used in 
applications where the computer is close to the sensors being measured or the actuators being 
controlled. Alternatively, they can be interfaced to remotely located transducers and actuators 
via signal conditioning modules known as two-wire transmitters. 

For simplicity this chapter looks at the different aspects of data acquisition and control 
separately, briefly describing the main components of typical plug-in boards their uses in a 



���������������	����
����
������������
���������������������������
���
�

data acquisition and control system, as well as the important specifications associated with 
each classification of plug-in board. Also discussed are the different techniques and important 
considerations when interfacing analog and digital input and output signals to plug-in boards, 
as well different sampling techniques. 

���� �����	��
��

Analog input (A/D) boards convert analog voltages from external signal sources into a 
digital format, which can be interpreted by the host computer. The functional diagram of a 
typical A/D board is shown in Figure 5.1 and comprises the following main components: 

Input channel sample and hold circuits (for simultaneous sampling) 
• Input multiplexer 
• Input signal amplifier 
• Sample and hold circuit 
• A/D converter (ADC) 
• FIFO buffer 
• Timing system 
• Expansion bus interface 
 

Each of these components plays an important role in determining how fast and how 
accurately the A/D board can acquire data. 

 

 

Figure 5.1 
Functional diagram of a typical A/D board 

5.2.1 Multiplexers 
A multiplexer is a device that switches one of its analog inputs (typically up to 16 single-
ended inputs) to its output; the input channel selected being determined by the binary code at 



������������������
�����������
���� 
 

the input address lines of the multiplexer. The number of address lines required is determined 
by the number of input channels to be multiplexed. A 16-channel multiplexer would therefore 
require four input address lines. 

On A/D boards, multiplexers facilitate the sampling of multiple inputs on a time-multi-
plexed basis. The A/D converter samples one channel, switches to the next channel, samples 
it, switches to the next channel, samples it, and so on. This eliminates the need for a signal 
amplifier and an A/D converter for each input channel, thereby reducing the costs of A/D 
boards. 

Important parameters 
Two parameters that particularly affect the rate, at which the multiplexer can switch between 
channels, and therefore its throughput rate, are the settling time and the switching time. 

Settling time 
The settling time is the time the multiplexer output takes to settle within a predetermined 
error margin of the input when the input signal on the channel swings from –FS (negative full 
scale input voltage) to +FS (positive full scale input voltage) or from +FS to –FS. 

Switching time 
The switching time specifies how long the multiplexer output takes to settle to the input 
voltage, when it is switched from one channel to another. 

Throughput rate 
The throughput rate is considered the higher of the settling time or the switching time, since it 
is possible the voltage on one channel can be at –FS while the voltage on the next switched 
channel is +FS. The throughput rate of the multiplexer is one factor that determines the total 
throughput of the A/D board. 

5.2.2 Input signal amplifier 
To achieve the greatest resolution in the measurement of an analog input signal, its amplified 
range should match the input range of the A/D converter. Consider a low level signal of the 
order of a fraction of an mV, fed directly to a 12-bit A/D converter with full-scale voltage of 
10 V. A loss of precision will result since the A/D converter has a resolution of only         
2.44 mV. Some form of amplification is needed.   

This is usually provided by a high performance instrumentation amplifier, typified by: 
• Balanced differential inputs 
• High input impedance 
• Low input bias currents 
• Low offset drift 
• High common mode rejection ratio 
 

Two types of amplifier are commonly included on A/D boards, depending on the cost and 
quality of the A/D board selected. Some A/D boards provide on-board amplification, where 
the amplifier gain is adjustable using hardware, while boards that provide programmable gain 
amplifiers (PGAs) make it possible to select, using software, different gains for different 
channels. 

 



���������������	����
����
������������
���������������������������
���
�

Adjustable on-board fixed gain amplifier 
The gain of these amplifiers is commonly adjusted using a potentiometer or are selectable on 
board links. A/D boards with a fixed gain amplifier should only be used where the signal 
levels on each of the input channels to be sampled have comparable ranges and lie within the 
full scale input range of the A/D converter. 

Signals with greatly different signal levels will require external signal conditioning and 
amplification to enable them to be used on boards utilizing fixed gain amplification. A more 
flexible alternative is the programmable gain amplifier discussed below. 

Programmable gain amplifier (PGA) 
Programmable gain amplifiers (PGAs) make it possible to program the gain of the input 
amplifier using software, requiring a once-only write to an on-board register to select the gain 
for an individual channel. This is especially advantageous where input signals on different 
channels have very different signal levels and input ranges. The amplifier gain for each 
channel can be set accordingly, so that the input range of the incoming signal is matched with 
the full scale range of the A/D converter, thus resulting in higher resolution and accuracy. 

It is usual practice that the amplifier gain, though programmable, is selected from a speci-
fied range of gain settings, thereby maintaining the amplifier within its operating range with-
out saturation. In some high performance boards, the gain is automatically adjusted 
depending on the level of the input signal. 

Important signal amplifier parameters 
Two parameters that particularly affect the accuracy and the rate at which the signal amplifier 
can amplify the input signals are amplifier drift, and the settling time. 

• Calibration and drift 
Calibration of an amplifier to eliminate offset and gain errors is only valid for the 
temperature at which the calibration was made. Over time, ��� with variations in 
temperature, the characteristics of the amplifier change or drift causing offset and 
gain errors known as offset drift and gain drift respectively. Offset drift and gain 
drift in parts per million per degree Centigrade (ppm/°C) specifies the sensitivity 
of the amplifier to changes in temperature. 

Compounding the natural tendency of the amplifier characteristics to drift is the 
fact that the potentiometer settings of fixed gain amplifiers also tend to drift with 
time and temperature. 

• Settling time 
Amplifier settling time is defined to be the time elapsed from the application of a 
perfect step input to the time the amplifier output settles within a pre-determined 
error margin of the required output value. 

A characteristic of amplifiers is that the throughput decreases with increasing 
gain. This is because at higher gains the signal output changes by a greater 
amount, therefore increasing the settling time. This applies to fixed gain and 
programmable gain amplifiers. If the A/D converter samples the amplified input 
signal before the amplifier output has settled correctly, (i.e. the time between 
samples is less than the settling time of the signal amplifier) then an incorrect data 
value may be sampled. Poor settling time is a major problem, because the level of 
inaccuracy varies with the gain and sampling rate and cannot be reported to the 
host computer. 

To allow for the lowest possible input ranges and therefore the highest required 
gains, A/D boards adjust their internal timing to allow for a greater settling time 



������������������
�����������
���� 
 

for the output of the amplifier. This means that the highest allowed settling time 
and the reduction in throughput caused by it, is imposed for all amplifier gain 
settings. More advanced A/D boards take into account the input range and amp-
lifier gain required, thereby increasing throughput at higher signal level input 
ranges where lower gain settings are required. 

5.2.3 Channel-gain arrays 
On the original A/D boards the address of the channel to be sampled was written to the 
multiplexer, the gain setting sent to the programmable gain amplifier (PGA) and once the 
signal was settled an A/D conversion was initiated. The data was subsequently read and 
transferred to the PC’s memory. This incurred a large software overhead. Background opera-
tion using interrupts is difficult and slower than polled I/O and accurately timed samples and 
higher speed data transfer methods such as DMA and repeat instructions are impossible in 
either case. 

The use of channel-gain arrays (CGA) on many A/D boards overcomes these limitations. 
The channel/gain array is a programmable memory buffer on the A/D board, which contains 
the channel address and gain setting for each input channel to be sampled. The gain of the 
amplifier for a particular channel is set by the internal hardware preceding the sampling of the 
channel, based on the gain value read from the channel/gain array. Where a single PGA is 
provided for all channels, the gain required for each channel is stored in a channel/gain array. 
If there are individual PGAs for each input channel, the gains for each input amplifier are 
stored in a gain array. The gain of each remains the same until overwritten by the software. 
Channel-gain arrays vary in size from a few channel/gain pairs (one for each channel), to 
many thousands of pairs. 

5.2.4 Sample and hold circuits 
As shown in Figure 5.2, a sample-and-hold (S/H) device consists of an analog signal input 
and input buffer, an analog signal output and output buffer, a charge-storing device, usually a 
capacitor, and a control input that controls the switching circuitry, which in turn, connects the 
input to the output. 
 

 

Figure 5.2 
Functional diagram of a sample-and-hold device 

As its name implies, a S/H has two operating states. When in sample mode, a sample 
command applied to the control input closes the internal switch, thereby causing the output to 
track the input as closely as possible. In this mode, the hold capacitor charges to the voltage 



��	������������	����
����
������������
���������������������������
���
�

level applied at the input. When a hold command is applied to the control input, the switch 
opens, disconnecting the output from the input. With the switch open and the high impedance 
of the output amplifier preventing the premature discharging of the capacitor, the hold capa-
citor retains the value of the input signal at the stage the hold command was applied to the 
control input. 

With the exception of some flash A/D converters, which are very fast, most A/D converters 
require a fixed time period during which the input signal to be converted remains constant. 
When used at the input to an A/D converter, a sample and hold circuit performs this function, 
acquiring an analog signal at the precise time its control input is made active. The A/D con-
verter can then convert the voltage held at the output of the sample and hold – minimizing 
inaccuracies in the conversion due to changes in the signal during the conversion process. 

Important signal parameters 
• Hold settling time 

The time that elapses from the occurrence of the sample command, to the point 
where the output has settled within a given error band of the input, is known as 
the acquisition time or hold settling time. 

• Aperture time 
The time required to switch from the sample state, measured from the 50% point 
of the mode control signal, to the hold state (the time the output stops tracking the 
input), is known as the aperture time. 

• Aperture uncertainty 
This value represents the difference between the maximum and minimum aperture 
times. 

• Drop rate 
A practical sample and hold cannot maintain its output voltage indefinitely while 
in the hold mode. The rate at which it decays is known as the decay or drop rate. 

• Aperture matching 
Data acquisition boards capable of performing simultaneous sampling (see 
Simultaneous sampling, p.153) require sample and hold devices on each channel. 
The smaller the aperture time and aperture uncertainty for each of these devices, 
the narrower the time range over which all the simultaneous samples will be 
taken. For a data acquisition board this is known as aperture matching. The lower 
the value, the more closely matched in time the simultaneous samples will be. 

As a point of note, A/D boards that perform simultaneous sampling still have 
the sample and hold circuit that precedes the A/D converter, as each channel 
sample still has to be multiplexed to the A/D converter. Some A/D converters 
have built-in sample and hold circuitry, and where this is the case, the preceding 
sample and hold circuit is not required. 

5.2.5 A/D converters 
Real-world signals are analog signals, representing some measured physical parameter for 
every instant in time. They must be converted to a discrete time signal to be interpreted and 
processed by computers. As their name would imply, analog-to-digital converters (A/D con-
verters, ADCs) measure an analog input voltage and convert this into a digital output format. 
A/D converters therefore represent the heart of an A/D board or a data acquisition system. 

The main types of A/D converters used and the specific and important parameters relating 
to their operation are detailed in the following sections. 



������������������
�����������
���
 
 

Successive approximation A/D converters 
A successive approximation A/D conversion is the most common and popular direct A/D 
conversion method used in data acquisition systems because it allows high sampling rates and 
high resolution, while still being reasonable in terms of cost. Throughput of a few hundred 
kHz for 12-bit ADCs is common, while 16-bit ADCs employing a hybrid conversion method 
(i.e. successive approximation plus a much faster method such as flash) are capable of 
throughput up to 1 MHz, while still being reasonable in cost. One clear advantage of this 
device is that it has a fixed conversion time proportional to the number of bits, n, in the 
digital output. If the approximation period is T, then an n-bit converter will have a conversion 
time of around nT. Each successive bit, which doubles the ADCs accuracy, increases the 
conversion time by the period T only. The functional diagram of an n-bit successive app-
roximation A/D converter is shown in Figure 5.3. 
 

 

Figure 5.3 
Functional diagram of an n-bit successive approximation A/D converter 

The successive approximation technique generates each bit of the output code sequentially, 
starting with the most significant bit (MSB). The operation is similar to a binary search and is 
based on successively closer comparisons between the analog input signal and the analog 
output from an internal D/A converter. 

The A/D converter starts the procedure by setting the digital input to the D/A converter, so 
that its analog output voltage is half the full-scale voltage of the A/D device. A comparator is 
used to compare the D/A analog output to the analog input signal being measured. 

If the analog input signal is greater, the most significant bit (MSB) of the D/A converter 
input is set to logic 1 and the next most significant bit of the D/A converter input is set to 
logic 1, setting the analog output of the D/A at 3/4 of full scale voltage. If the analog input 
signal was less, the MSB of the D/A input is cleared to logic 0 and the next most significant 
bit of the D/A input is set to logic 1, setting the analog output of the D/A at 1/4 of full-scale 
voltage. 



���������������	����
����
������������
���������������������������
���
�

Each step effectively divides the remaining fraction of the input range in half, then again 
compares it to the analog input signal. This is repeated until all the n bits of the A/D 
conversion have been determined. It is obviously important that the analog input signal to the 
A/D does not change during the conversion process, hence the use of sample and hold 
circuits. 

Flash A/D converters 
Flash A/D converters are the fastest available A/D converters, operating at speeds up to 
hundreds of MHz. This type of device is used where extremely high speeds of conversion are 
required with lower resolution, for example, 8-bits. 

Figure 5.4 shows the functional diagram of an n-bit flash A/D converter. Each of the       
2n–1 comparators simultaneously compares the input signal voltage to a reference voltage 
determined by its position in the resistor series, and corresponding to the output code of the 
device. Flash A/D conversion is quicker than other methods of A/D conversion because each 
bit of the output code is found simultaneously, irrespective of the number of bits-resolution. 
However, the greater the resolution of the device, the greater the number of comparators 
required to perform the conversion. In fact, each additional bit doubles the number of 
comparators, and therefore increases the size and cost of the chip. 

 

 

Figure 5.4 
Functional diagram of an n-bit flash A/D converter 



������������������
�����������
���� 
 

Flash A/D converters tend to be found in specialist boards, such as digital oscilloscopes, 
real-time digital signal processing applications and general high-frequency applications. 

Integrating A/D converters 
Integrating A/D converters use an indirect method of A/D conversion, whereby the analog 

input voltage is converted to a time period that is measured by a counter. The functional 
diagram of a dual-slope integrating A/D converter is shown in Figure 5.5(a). 

 

 

Figure 5.5(a) 
Functional diagram of an n-bit dual slope integrating A/D converter 

 

 

Figure 5.5(b) 
Voltage appearing at V0 



��
������������	����
����
������������
���������������������������
���
�

The operation of a dual slope integrating A/D converter is based on the principle that the 
output of an integrating amplifier to a constant voltage input is a ramp whose slope is 
negative and proportional to the magnitude of the input voltage. 

At the start of the A/D conversion, a fixed counter is cleared to zero and the unknown 
analog input voltage is applied to the input of the integrating amplifier. As soon as the output 
of the integrating amplifier reaches zero, a fixed interval count begins. After a predetermined 
count period, T, the count is stopped. For a positive analog input voltage, the output of the 
integrating amplifier has reached a negative value proportional to the magnitude of input 
analog signal. This is shown in Figure 5.5(b). If the analog input varies during the fixed count 
time interval, then the output of the integrating amplifier is proportional to the average value 
of the input over the fixed time interval. This is especially useful for elimination of cyclical 
noise and/or mains hum appearing at the input. 

At this point, the count register is again cleared. A negative fixed voltage reference is now 
applied to the input of the integrating amplifier and the count begins. When the output of the 
integrating amplifier again returns to zero the count is stopped. The average value of the input 
analog signal is equal to the ratio of the counts multiplied by the reference voltage. This is 
very effective in averaging and therefore eliminating cyclical noise appearing at the analog 
input. 

Integrating A/D converters, generally include an additional and preceding phase, during 
which the device carries out a self-calibrating, auto-zero operation. The stability, accuracy, 
and speed of the clocking mechanism, the duration of the count period, and the accuracy and 
stability of the voltage reference, determine the accuracy of the device. 

These devices are low speed, typically a few hundred hertz maximum. However, they are 
capable of high accuracy and resolution at low cost. For this reason they are principally used 
in low frequency applications, such as temperature measurement, in digital multimeters and 
instrumentation. 

Important A/D parameters 
Analog to digital conversion is essentially a ratio operation, whereby the analog input signal 
is compared to a reference (full-scale voltage), converted to a fraction of this value, and then 
represented by a digital number. In approximating an analog value, two operations are per-
formed. Firstly the quantization or mapping of the analog input into one of several discrete 
ranges, and secondly the assignment of a binary code to each discrete range. Figure 5.6(a) 
shows the ideal transfer function of a 3-bit A/D converter with a unipolar (0 V to FSV) input. 
The horizontal axis represents the analog input signal as a fraction of full-scale voltage (FSV) 
and the vertical axis represents the digital output. An n-bit A/D converter has 2n distinct 
output codes. While not used in practical DAQ systems, a 3-bit A/D converter represents a 
convenient example since it divides the analog input range into 23 = 8 divisions, each division 
representing a binary code between 000 and 111. Figure 5.6(b) shows the ideal transfer 
function of a 3-bit A/D converter with a bipolar (–FSV to +FSV) input. This is equivalent to 
the unipolar transfer function except that it is offset by –FSV. 
 



������������������
�����������
���� 
 

 

(a) Transfer function with unipolar input 

 

 

(b) Transfer function with bipolar input 

Figure 5.6 
Ideal transfer function of a 3-bit A/D converter 

With regard to Figure 5.6, some of the important parameters of A/D converters are 
discussed below. 



���������������	����
����
������������
���������������������������
���
�

Code width 
This is the fundamental quantity for A/D converter specifications, and is defined as the range 
of analog input values for which a single digital output code will occur. The nominal value of 
a code width, for all but the first and last codes in the ideal transfer characteristic, is the 
voltage equivalent of 1 LSB of the full-scale voltage. Therefore, for an ideal 12-bit A/D 
converter with full-scale voltage of 10 V the code-width is 2.44 mV. Noise and other con-
version errors may cause variations in code width, however, the code width should not 
generally be less than 1/2 LSB or greater than 3/2 LSB for practical A/D converters. 

Resolution 
Resolution defines the number of discrete ranges into which the full scale voltage (FSV) 
input range of an A/D converter can be divided to approximate an analog input voltage. It is 
usually expressed by the number of bits the A/D converter uses to represent the analog input 
voltage (i.e. n-bit) or as a fraction of the maximum number of discrete levels, which can be 
used to represent the analog signal (i.e. 1/ 2n). The resolution only provides a guide to the 
smallest input change that can be reliably distinguished by an ideal A/D converter, or in 
effect its ideal code-width. For example, when measuring a 0–10 V input signal, the smallest 
voltage change an A/D converter with 12-bit resolution can reliably detect is equal to: 
1/4096 * FSV= 10/4096=2.44 mV 

Therefore, each 2.44 mV change at the input would change the output by ±1 LSR or         
±0 × 001h. 0V would be represented by 0 × 000h, while the maximum voltage, represented 
by 0 × FFFh would be 9.9976 V. Due to the staircase nature of the ideal transfer charac-
teristic, a much smaller change in the input voltage can still cause the A/D converter to make 
a transition to the next digital output level, but this will not reliably be the case. Changes 
smaller than 2.44 mV will not therefore be reliably detected. If the same 12-bit A/D converter 
is used to measure an input signal ranging from –10 V to +10 V, then the smallest detectable 
voltage change is increased to 4.88 mV. 

Input range 
Range refers to the maximum and minimum input voltages that the A/D converter can 
quantize to a digital code. Typical A/D converters provide convenient selection of a number 
of analog input ranges, including unipolar input ranges (e.g. 0 to +5 V or 0 to +10 V) and 
bipolar input ranges (e.g. –5 V to +5 V or –10 V to +10 V). On A/D boards, the input range is 
usually selectable by on-board jumpers. 

Note that the transfer functions of Figure 5.6 show that the maximum input voltage is         
1 LSB less than the nominal full-scale voltage (FSV). If it is essential that the A/D’s input 
range go from 0 to FSV, then for some A/D converters it may be possible to adjust the 
voltage reference to slightly above nominal FSV so that this can be achieved. This increases 
the real full-scale range and the LSB value by a small amount. For an input range of 0–10 V a 
code of 0 × 000h now represents 0 V while 0 × FFFh represents 10 V. 

Data coding 
While most A/D converters express unipolar ranges (i.e. 0–10 V) in straight binary, some 
return complementary binary, which is just the binary code with each bit inverted. Where 
A/D converters are used to measure voltages in bipolar ranges (i.e. –10 V to +10 V) there is 
an increased number of ways of representing the coded output (offset binary, sign and 
magnitude, one’s complement and two’s complement). 

Most commonly, and for simplicity, A/D converters usually return offset binary values. 
This means that the most negative voltage in a bipolar range (–5 V for a range –5 V to +5 V) 



������������������
�����������
���� 
 

is returned as 0 × 000h, while the highest digitally coded value of 0 × FFFh (for a 12-bit 
ADC), represents 4.9976 V. 0 × 800h represents the mid-scale voltage of 0 V. 

Conversion time 
The conversion time of an A/D converter is defined as the time taken from the initiation of 
the conversion process to valid digital data appearing at the output. For most A/D converters, 
conversion time is identical to the conversion rate. Therefore, an A/D converter with a 
conversion time of 25 µs is able to continuously convert analog input signals at a rate of 
40,000/sec. For some high-speed A/D converters, pipelining allows new conversions to be 
initiated before the results of prior conversions have been determined. An example of this 
would be an A/D converter that could perform conversions at a rate of 5 MHz (200 ns con-
version time), but actually took 675 ns (1.48 MHz conversion rate) to perform each indi-
vidual conversion. 

Errors in A/D converters 
Errors that may occur in A/D converters are defined and measured in terms of the location of 
the actual transition points in relation to their locations in the ideal transfer characteristic. 
These are discussed below. 

Quantization uncertainty 
Unlike a D/A converter, where there exists a unique analog value for each digital code, each 
digital output code is valid over a range of analog input values. Analog inputs within a given 
discrete range are represented by the same digital output code, usually assigned to the 
nominal mid-range analog value. There is, therefore, an inherent quantization uncertainty of ± 
l/2 LSB (least-significant bit), in addition to any other actual conversion errors. This is shown 
in Figure 5 .6(b). 

Unipolar offset 
Note that in the ideal transfer function, the first transition should ideally occur 1/2 LSB above 
analog common. The unipolar offset is the deviation of the actual transition point from the 
ideal first transition point. This is shown in Figure 5.7(a). 

Bipolar offset 
As seen in Figure 5.7(b) the transfer function for an ideal bipolar ADC resembles the unipolar 
transfer function, except that it is offset by the negative full-scale voltage (–FSV). Offset 
adjustment of a bipolar A/D converter is set so that the first transition occurs at 1/2 LSB 
above –FSV, while the last transition occurs at –3/2 LSB below +FSV. Because of non-
linearity, a device with perfectly calibrated end points may have an offset error at analog 
common. This is known as the bipolar offset error and is shown in Figure 5.7(b). 
 



���������������	����
����
������������
���������������������������
���
�

 

(a) Unipolar offset error 

 

(b) Bipolar offset error 

Figure 5.7 
3-bit A/D converter transfer functions with offset errors 

Unipolar and bipolar gain errors 
The gain, or scale, factor is the number which establishes the basic conversion relationship 
between the analog input values and the digital output codes, e.g. 10 V full-scale. It repre-
sents the straight-line slope of the ideal transfer characteristic. The gain error is defined as the 
difference in full-scale values between the ideal and the actual transfer function when any 



������������������
�����������
���� 
 

offset errors are adjusted to zero. It is expressed as a percentage of the nominal full-scale 
value or in LSBs. Gain error affects each code in an equal ratio. Unipolar and bipolar gain 
errors are shown in Figure 5.8. 
 

 

(a) Unipolar gain error 

 

 

 

(b) Bipolar gain error 

Figure 5.8 
3-bit A/D converter transfer function with gain errors 

Offset and gain drift 
Offset and gain errors are usually adjustable to zero with calibration, however this calibration 
is only valid at the temperature at which it was made.  



��	������������	����
����
������������
���������������������������
���
�

Changes in temperature result in a non-zero offset and gain error, known as offset drift and 
gain drift. These values, specified in ppm/deg C, represent the ADC’s sensitivity to tem-
perature changes. 

Linearity errors 
With most ADCs the gain and offset specifications are not the most critical parameters that 
determine an A/D converter’s usefulness for a particular application, since in most cases they 
can be calibrated out in software and/or hardware. The most important error specifications are 
those that are inherent in the device and cannot be eliminated. Ideally, as the analog input 
voltage of an A/D converter is increased, the digital codes at the output should also increase 
linearly. The ideal transfer function of the analog input voltage verses the digital output code 
would show a straight line. Deviations from the straight line are specified as non-linearities. 
The most important of these, (because they are errors which cannot be removed), are integral 
non-linearity and differential non-linearity errors. The transfer characteristics of a 4-bit A/D 
converter showing differential and integral linearity errors are shown in Figure 5.9(a) and 
Figure 5.9(b). 
 
 
 

 

(a) Integral non-linearity errors specified as low-side transition 

Figure 5.9(a) 
Transfer function of a 4-bit A/D converter with integral non-linearity and differential non-linearity errors 

 



������������������
�����������
���
 
 

 

(b) Integral non-linearity errors specified as center-of-code transition 

Figure 5.9(b) 
Transfer function of a 4-bit A/D converter with integral non-linearity and differential non-linearity errors 

Integral non-linearity (INL) 
This is the deviation of the actual transfer function from the ideal straight line. This ideal line 
may be drawn through the points where the codes begin to change (low-side transition or 
LST), as shown in Figure 5.9(a), or through the center of the ideal code widths (center-of-
code or CC), as shown in Figure 5.9(b). Most A/D converters are specified by low-side-
transition INL. Thus, the line is drawn from the point 1/2 LSB on the vertical axis at zero 
input to the point 3/2 LSB beyond the last transition at full-scale input. The deviation of any 
transition from its corresponding point on that straight line is the INL of the transition. In 
Figure 5.9(a), the transition to code 0100 is shifted to the right by 1 LSB, meaning that the 
LST of code 0100 has an INL of +l LSB. In the same figure the transition to code 1101 is 
shifted left by 1/2 LSB, meaning that the LST of code 1101 has an INL of –l/2 LSB. 

When the ideal transfer function is drawn for center-of-code (CC) integral non-linearity 
specification, as shown in Figure 5.9(b), the INL of each transition may be different. Where 
the digital code 1101 previously had –1/2 LSB of LST INL, it now has 0 LSB of CC INL. 
Similarly, the code 1011 has –1/8 LSB of CC INL, where it previously had 0 LSB of LST 
INL. 

The INL is an important figure because the accurate translation from the binary code to its 
equivalent voltage is then only a matter of scaling. 

Differential non-linearity (DNL) 
In an ideal A/D converter, the midpoints between code transitions should be 1 LSB apart. 
Differential non-linearity is defined as the deviation in code width from the ideal value of      



���������������	����
����
������������
���������������������������
���
�

1 LSB. Therefore, an ideal A/D converter has a DNL of 0 LSB, while practically this would 
be ± l/2 LSB. If DNL errors are large, the output code widths may represent excessively large 
or small ranges of input voltages. Since codes do not have a code width less than 0 LSB, the 
DNL can never be less than –1 LSB. In the worst case, where the code width is equal to or 
very near zero, then a missing code may result. This means that there is no voltage in the 
entire full-scale voltage range that can cause the code to appear. In Figures 5.9(a) and 5.9(b), 
the code-width of code 0110 is 2 LSBs, resulting in a differential non-linearity of +l LSB. As 
the code-width of the code 1001 is 1/2 LSB, this code has a DNL of –1/2 LSB. In addition, 
the code 0111 does not exist for any input voltage. This means that code 0111 has –1 DNL 
and the A/D converter has at least one missing code. 

Often, instead of a maximum DNL specification, there will be a simple specification of 
monotonicity or no missing codes. For a device to be monodic, the output must either 
increase or remain constant as the analog input increases. Monodic behavior requires that the 
differential non-linearity be more positive than –l LSB. However, the differential non-
linearity error may still be more positive than +1 LSB. Where this is the case, the resolution 
for that particular code is reduced. 

5.2.6 Memory (FIFO) buffer 
A characteristic of high-speed A/D boards is the inclusion of on-board memory or I/O in the 
form of a FIFO (first in first out) buffer or a pair of buffers. These range in size from 16 bytes 
to 64 Kbytes. 

The FIFO buffer(s) form a fast temporary memory area. For small FIFOs, the buffer is 
addressed as I/O. Larger FIFOs are actually mapped into the memory address space of the 
host PC. Samples can therefore be collected up to the maximum size of the buffer without 
actually having to perform any data transfers. Where more samples are required, existing data 
in the buffer must be transferred to other parts of the main memory, or written to hard disk, 
before it is overwritten. 

FIFO buffering is particularly useful in situations where the host computer is using polled 
I/O or interrupts to transfer data, and might not be able to respond quickly enough to transfer 
the current sample, before it is overwritten by a subsequent sample. This would typically 
occur when the host computer is running a multitasking operating system such as Windows 
or OS/2, where there are inherent interrupt latencies or a large number of tasks being 
performed. The FIFO buffer also has the effect of evening-out variations in DMA response 
times, helping to guarantee full-speed operations even with substandard PC/AT clones. On-
board FIFOs, when used in conjunction with specific data techniques such as polled I/O, 
interrupts, DMA or repeat string instructions, can greatly improve the throughput of A/D 
boards. 

5.2.7 Timing circuitry 
To perform multiple analog-to-digital conversions automatically, at precisely defined time 
intervals, A/D boards are equipped with timing circuitry whose principal responsibility is to 
generate the strobe signals that allow the components of the analog input circuitry to perform 
their respective functions efficiently and correctly. 

Clocking circuits are made up of a frequency source, which is either an on-board oscillator 
between 400 kHz and 10 MHz or an external user-supplied signal, and a prescaler/divider 
network, typically a counter/timer chip that slows the clock signal down to more usable 
values. The clock frequency can be as low as 1 Hz or up to the maximum throughput of the 
board. 



������������������
�����������
���� 
 

A/D conversions are started by triggers; either by a software trigger (writing to an on-board 
register), or an external hardware trigger. Data conversions can be synchronized with external 
events by using external clock frequency sources and external triggers. The external trigger 
event is usually in the form of a digital or analog signal, and will begin the acquisition 
depending on the active edge if the trigger is a digital signal, or the level and slope, if the 
trigger is an analog signal.  

In performing an analog-to-digital conversion cycle on a single input channel, the timing 
circuitry must ensure that the following steps are performed: 

• Once the channel/gain array has been initialized, the timing circuitry increments 
to the next channel/gain pair. The next channel to be sampled is output to the 
address lines of the input multiplexer and the required gain setting is output to the 
programmable gain amplifier (PGA). The sample-and-hold (S/H) is put into 
sample mode. 

• The timing circuitry must wait for the input multiplexer to settle, then for the 
PGA output delay time and lastly for any S/IA delay. 

• The S/H is put into hold mode. The timing circuitry must wait for the duration of 
the aperture time of the S/H for the signal to become stable at the output of the 
S/H. 

• A start conversion trigger is issued to the A/D converter. 
• The timing circuitry waits for the end of conversion signal from the A/D 

converter to become active. 
• The available data is then strobed from the A/D converter into a data buffer or a 

FIFO, from where it is usually accessible by the host computer. 
• If simultaneous sampling is available on the A/D board, the timing circuitry 

generates the necessary sequence of strobes to the input S/H devices, so that all 
channels are sampled at the beginning of the sampling cycle, before the data is 
passed to the rest of the analog input circuitry. 

 
Total throughput, for multiple conversions on different channels, is often increased by 

overlapping parts of this cycle. For example, while the A/D converter is busy converting the 
S/H output, the next channel/gain pair can be output to the multiplexer and PGA, so that their 
settling and delay times are overlapped with the A/D conversion time. 

The timing circuitry may also include a block-sampling mode, which allows blocks of 
samples to be collected at regular intervals at the A/D board’s maximum sampling rate. This 
is discussed in the section on Sampling techniques, p. 151. 

5.2.8 Expansion bus interface 
The bus interface provides the control circuitry and signals used to transfer data from the 
board to the PC’s memory or for sending configuration information (e.g. channel/gain pairs) 
or other commands (e.g. software triggers) to the board.   

It includes: 
• The plug-in connector, which provides the hardware interface for connecting all 

control and data signals to the expansion bus, (e.g. ISA, EISA etc), of the host 
computer. 

• The circuitry, which determines the base address of the board. This is usually a 
selectable DIP switch and defines the addresses of each memory and I/O location 
on the A/D board. 



��
������������	����
����
������������
���������������������������
���
�

• The source and level of interrupt signals generated. Interrupt signals can be 
programmed to occur at the end of a single conversion or a DMA block. The 
configuration of the interrupt levels used is commonly selected by on-board links. 

• DMA control signals and the configuration of the DMA level(s) used. The 
configuration of the DMA levels used is typically selected by on-board links. 

• Normal I/O to and from I/O address-locations on the board. 
• Wait state configuration for use in machines with high bus speeds or with non-

standard timing. The number of wait states is usually configurable by on-board 
links. 

���� �
�������
�
����

�������
����
������

As previously demonstrated, great care must be taken in the connection, earthing and 
shielding of signals, received from external transducers (or similar signal sources), to signal 
conditioning equipment. This is especially true where the signal levels are very small and/or 
the signal sources are a long way from the measuring equipment. In these cases, the effects of 
earth loops, induced noise, and common mode voltages can introduce errors that lead to large 
inaccuracies in the signal measurement. 

The three basic configurations for connecting input signals to signal conditioning 
equipment are available on plug-in A/D boards: 

• Single ended 
• Pseudo differential 
• Differential 

5.3.1 Single ended inputs 
Single ended inputs are those where the signal is transmitted over a single conductor and 
referenced to analog ground AGND. The single conductor is connected to the HI terminal of 
the amplifier while the LO terminal of the amplifier is connected to AGND. This is shown in 
Figure 5.10. 
 

External signals

VHI0

VLO0
ES1

Common signal ground
VCM RLEAD

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

AGND

ES2

ES0 ES +V0 CM

G(ES  +V )0 CM

ES +V0 CM

O V

AGND or OV
System reference ground point

G A/D

Digital
Code

+

-
ES3

ES4

ES5

ES6

ES7

Cable

Input amplifier
with gain G

Host input connector

In
pu

t M
ul

tip
le

xe
r

 

Figure 5.10 
Single ended inputs 



������������������
�����������
���� 
 

Single ended inputs usually carry high-level signals (in the order of volts), which do not 
require high gains (> × 5), transmitted over short distances (0.5 m). Where they are required 
to be transmitted over longer distances, they should be shielded, and the shield connected to 
AGND at the instrument end only. 

While this configuration allows more inputs to be multiplexed to a single A/D converter, it 
should only be used where there is no practical way of bringing a remote ground or an analog 
ground back to the measurement point. 

Because the amplifier LO terminal is connected to AGND, what is amplified is the 
difference between Esn + Vcm and AGND. This introduces the common mode offset voltage as 
an error. 

Plug-in boards that do not have an amplifier (i.e. where the multiplexed input is fed straight 
to the A/D converter) must use the single ended input configuration. 

5.3.2 Pseudo-differential configuration 
The pseudo-differential input configuration is a variation of the single ended input con-
figuration, providing some degree of common mode rejection while still allowing the 
maximum number of multiplexed input channels. 
 
 

External signals

VHI0

VLO0
ES1

Common signal ground
VCM

RLEAD

CH0

CH1

CH2

CH3

CH4

CH5

CH6

CH7

AGND

ES2

ES0 ES +V0 CM G ES0

ES +V0 CM

O V

AGND or OV
System reference ground point

G A/D

Digital
Code

+

-
ES3

ES4

ES5

ES6

ES7

Cable

Input amplifier
with gain G

Host input connector

In
pu

t M
ul

tip
le

xe
r

VCM

 

Figure 5.11 
Pseudo differential inputs 

In the configuration shown in Figure 5.11 the signal source LO outputs are all connected to 
the LO input terminal of the amplifier, while the signal source HI outputs are connected to the 
respective HI input for each of the channels. The LO input to the amplifier is then referenced 
to analog ground AGND at the signal end of the cable. This method is only possible if the LO 
terminal of the amplifier is brought out to the connector and the signal sources can be groun-
ded at their signal ends. In using this configuration only the difference between the channel 
input Esn + Vcm and the signal ground, which has the common mode voltage on it, is 
amplified. 



�	�������������	����
����
������������
���������������������������
���
�

5.3.3 Differential inputs 
True differential inputs, where the HI and LO outputs of the signal source are connected 
directly to the HI and LO terminals of the amplifier, as shown in Figure 5.12, offer the 
greatest noise immunity and common mode rejection. 
 
 

External signals

ES0

ES1

Reference ground

VCM0

RLEAD

CH   Hi0

CH   Hi1

CH   Hi2

CH   Hi3

CH   Lo0

CH   Lo1

CH   Lo2

CH   Lo3

AGND

ES2

ES0 ES   +V  0 CM 0 ES   +V  0 CM 0

V  CM 0

GES0

V  CM 0 In
pu

t
M

ul
tip

le
xe

r 1
In

pu
t

M
ul

tip
le

xe
r 0

AGND or OV
system reference ground point

A/D

Digital
Code

ES

Cable

Input amplifier
with gain G

Host input connector

G

+

-

 

Figure 5.12 
Differential input configuration 

In this configuration, only the difference in the signal inputs is measured. Noise induced 
equally in each signal line will cancel out at the inputs of a true balanced differential 
amplifier, while common mode voltages (appearing at both inputs) will be rejected if the 
amplifier has a large CMRR. This should not preclude the added precautions of twisting 
differential pairs and providing earthed shields to reduce noise induced in long cables. 

Differential inputs should be used: 
• When measuring signals with large common mode voltages (e.g. strain gauges). 
• Where several transducers with different ground points (and possibly different 

ground potentials) are to be measured. Connecting the Lo channel of each sensor 
together at a common point, as in the pseudo differential connection, can create 
unwanted ground currents that induce offset and noise errors at the amplifier 
inputs. 

• When measuring signal voltages that are very small, and the signal/noise ratio is 
low. 

• When the input transducer is physically located a large distance from the 
measuring device and may be susceptible to the effects of noise. 

 
Note that for differential input configuration, two input multiplexers are needed, and for the 

same number of input terminals as single ended and pseudo differential inputs, half the 
number of input channels is available in differential mode. 

Where high impedance sources are used, bias resistors may be required to return bias 
currents to the operational amplifier, thus preventing the floating of inputs beyond the limits 



������������������
�����������
��	� 
 

of the amplifier inputs. Such bias resistors normally consist of high impedance resistors, 
typically between 100 KΩ and 1 MΩ, connected between the HI and LO signal lines and 
AGND. 

����� ���	���
	����
��� 
�����������
����������	�������	��
��

5.4.1 Dynamic range 
One of several considerations in determining the analog input requirements of an A/D board 
is the range of voltages, which each channel is required to measure. The physical parameters 
to be measured, the type of sensor(s) used and how they are connected, determine the input 
voltage ranges required. 

The input range specifications quoted by board manufacturers of A/D boards refer to the 
minimum and maximum voltage levels that the A/D converter on the board can quantize. 
Typically, a selection of input ranges is provided, either unipolar (e.g. 0 to 10 V), for mea-
suring positive voltages only, or bipolar (e.g. –10 V to +10 V), for measuring both positive 
and negative voltages. This allows the user to match the input signal range to that of the A/D 
converter, taking into account the resolution of the A/D converter and the gain required of the 
input amplifier. 

When considering the input range, it is only the dynamic range of the input signal that 
needs to be taken into account. For example, consider a strain gauge setup in a Wheatstone 
bridge configuration. The input voltage to be read has a common mode component due to the 
excitation of the bridge, while the small differential voltage changes, (of interest) are due to 
the change in strain gauge resistance. The common mode voltages do not provide any useful 
information and are greatly attenuated, (almost eliminated), by using differential inputs and 
instrument amplifiers with high CMRR. Only the small differential voltage changes are 
amplified and converted by the A/D converter. The amplifier gain should therefore be 
selected so that the maximum differential voltage change expected at the input will be 
amplified to cover as much of the input range of the A/D converter as possible. 

As only one of the allowable range settings can be selected at any time, typically by 
jumpers on the board itself, care should be taken in matching the input signal requirements 
where more than one channel is sampled. The A/D converter input range selected must 
accurately measure the signal inputs from a number of channels, possibly different sensors, 
and therefore potentially different input voltage levels and signal ranges. The input range 
should therefore cover each channel’s input range with as little overlap as possible, thus 
giving the greatest number of data points and therefore the highest resolution and accuracy. 

It should be noted that the input ranges specified do not necessarily refer to the maximum 
or minimum voltage levels that can be applied at any single input, or to the maximum 
allowable common mode voltage, which can be applied, to a differential input. These are 
specifications, more related to the input amplifier. If there are any doubts with regard to this, 
users should consult the board manufacturer. 

5.4.2 Resolution 
The resolution specification quoted by manufacturers of A/D boards refers to the resolution 
of the A/D converter used on the board. It is usually expressed by the number of bits the A/D 
converter uses to represent the analog input voltage (i.e. n-bit) or as a fraction of the 
maximum number of discrete levels, which can be used to represent the analog signal (i.e.    
1/2n). The resolution implicitly defines the number of discrete ranges into which the full-scale 
voltage (FSV) input range can be divided to approximate an analog input voltage. A 12-bit 



�	�������������	����
����
������������
���������������������������
���
�

A/D board can divide the input range into (212 = 4096) discrete levels, each 1/4096 the size of 
the input voltage range. 

Together, the resolution, input range, and input amplifier gain available on the A/D board, 
determine the smallest detectable voltage change in the signal input. For an ideal A/D board 
with a resolution of n-bits, this is calculated using the formula: 
smallest detectable change = input range   
             amplifier gain × 2n 

For example, on a 12-bit A/D board, with a 0 V to +10 V input range, and the amplifier 
gain set to 1, the smallest detectable voltage change would be 10/(1 * 4096) = 2.44 mV. 

Therefore, each 2.44 mV change at the input would change the output of the A/D converter 
by ± l LSB or ± 0 × 001h. 0 V would be represented by 0 × 000h, while the maximum 
voltage, represented by 0 × FFFh would be 9.9976 V. Due to the staircase nature of the ideal 
transfer characteristic of an A/D converter, a much smaller change in the input voltage can 
still result in a transition to the next digital output level, but this will not reliably be the case. 
Changes smaller than 2.44 mV will not therefore be reliably detected. If the same 12-bit A/D 
converter is used to measure an input signal ranging from –10 V to +10 V, then the smallest 
detectable voltage change is increased to 4.88 mV. This value represents the voltage 
equivalent of 1 LSB, of the full-scale voltage, and for A/D boards, is termed code width. 

The resolution figure quoted only provides a guide to the smallest detectable change that 
can be reliably distinguished by the A/D board, since the value calculated is based on the 
ideal performance of all components of the analog input circuitry. The effects of noise, non-
linearities in the A/D converter, and errors in the other components of the analog input 
circuitry, can mean that the true resolution of an A/D board can be as much as 2 bits lower 
than the manufacturer’s specification. This means that a 16-bit A/D board may be accurate to 
only 14-bits. 

5.4.3� System accuracy 
The system accuracy, or how closely the equivalent digital outputs match the incoming 
analog signal(s), is another very important criteria, especially where the analog signal 
contains a lot of information, or where a small part of the signal range is to be examined in 
detail. As has been demonstrated, the functional components of the analog input circuitry (i.e. 
multiplexer, amplifier, sample-and-hold and A/D converter) of A/D boards are not ideal. The 
practical performance limits and errors in each of these components influence the overall 
performance and accuracy of the system as a whole. 

The specification known as system accuracy usually refers to the relative accuracy of the 
A/D board and indicates the worst-case deviation from the ideal straight-line transfer 
function. Relative accuracy is determined on an A/D board by applying to the input a voltage 
at minus full-scale, converting this analog voltage to a digital code, increasing the voltage, 
and repeating the steps until the full input range of the board has been covered. By 
subtracting the theoretical analog voltage, which should cause each code transition from the 
analog input voltage that actually resulted in the code transition. The maximum deviation 
from zero is the relative accuracy of the A/D board. Board manufacturers usually quote the 
system accuracy in terms of LSB, since an absolute voltage value would only have meaning 
relative to the selected input voltage range. For example, where ‘n’ = 2, the system accuracy 
of a 12-bit A/D board is 2/4096 (±0.048%), while for a 16-bit A/D board the accuracy is 
2/65536 (±0.003%). 

The tendency of analog circuits to change characteristics or drift, with time and 
temperature, requires that A/D boards be periodically calibrated to maintain accuracy within 
the specified range. Manufacturers specify the offset voltage and gain accuracy to be 



������������������
�����������
��	� 
 

adjustable in a range ± n LSB. This means that where the input range to a 12-bit A/D 
converter is 0–10 V, and the input is set to +1/2 LSB (i.e. +1.22 mV), the digital output 
would read no greater than 0 × 005h. This would represent a maximum offset voltage 
adjustment of 5/4096 × 10 V = 12.2 mV. Where the input range to a 12-bit A/D converter is 
0–10 V, and the input is set to –3/2 LSB (i.e. +9.996 V), the digital output would read no less 
than 0 × 99 Ah. For gain accuracy, this figure represents the maximum gain error. 

Autocalibration, where the entire analog section of the board (multiplexer, amplifier, 
sample and hold), as well as the A/D converter, is automatically calibrated without user 
intervention, is provided on some A/D boards.   

Several auto-calibration methods are used: 
• Calibration is carried out automatically when a voltage reference is connected to 

the board. 
• Calibration takes place as part of the conversion process. 
• The accuracy on each input channel is checked for all available gain settings. A 

correction code for each channel/gain combination is stored, then recalled to 
dynamically compensate for drift in hardware. 

���� �� !�
����������
��"��#�$�
����"�	�� �

One of the most critical factors confronting users of data acquisition systems and A/D boards 
is the question of how frequently should an analog signal be sampled to be able to represent 
and reconstruct the input signal accurately. How fast should the A/D board be able to sample 
the data? 

5.5.1 Nyquist’s theorem 
Nyquist’s sampling theorem states that: 

An analog band-limited signal that has no spectral components at or above a frequency of 
F Hz can be uniquely represented by samples of its values spaced at uniform intervals that 
are no more than 1/2 F seconds apart or sampled at a frequency of no less than 2 F Hz. 

The maximum sampling period, T=l/2 F, is known as the Nyquist interval, while the 
minimum sampling frequency, corresponding to this period, 2 F, is known as the Nyquist 
sampling frequency, or rate. 

Sampling at a rate higher than the Nyquist rate is called oversampling. This is routinely 
performed where it is essential to recover a true replica of the signal being sampled. When a 
signal is sampled at less than the Nyquist rate, this is known as undersampling and can lead 
to erroneous results. 

5.5.2 Aliasing 
To intuitively understand what happens when a signal is oversampled compared to a signal 
that is sampled less than the Nyquist sampling rate, consider Figure 5.13. 
 



�		������������	����
����
������������
���������������������������
���
�

d) Oversampled signal adequately reconstructed

b) Aliasing caused by sampling at less than the Nyquist sampling rate

a) DC alias caused by sampling at half the Nyquist sampling rate

c)Sampling at the Nyquist sampling rate

 

Figure 5.13 
Effect of sampling rate on the reconstructed input signal 

Figure 5.13 (d) shows a signal that is sampled at a frequency well above the Nyquist 
sampling rate. In this case, the information contained in the signal, including its shape and 
frequency, can be correctly reproduced. If the sampling rate is reduced to below the Nyquist 
sampling rate, that is, the sample points are too far apart, then the input signal is 
misrepresented by what appears to be a much lower frequency signal. This phenomenon is 
known as aliasing and is demonstrated in Figure 5.13 (b). 

In Figure 5.13(a), the input signal is sampled at half the Nyquist sampling rate, which is the 
same frequency as the frequency of the signal itself. The reconstructed waveform appears as a 
DC signal. When the input signal is sampled at the Nyquist sampling rate, as shown in Figure 
5.13(c), the reconstructed signal has the correct frequency but incorrectly appears as a 
triangular waveform. Where undersampling occurs, the frequency of the reconstructed signal 
appears to be much lower, lying between DC and the Nyquist frequency. 

Theoretically, the effects of aliasing are more easily understood by looking at the frequency 
spectrum of an analog signal. Without detailing the complex mathematical descriptions and 
frequency analysis required, it can be shown that a time varying band-limited signal can be 
equally represented by its spectrum in the frequency domain. Figure 5.14(b) shows the 
frequency spectrum of the band-limited signal shown in Figure 5.14(a). If the time varying 
signal is sampled using a very narrow series of square wave pulses, as shown in Figure 
5.14(c), then the frequency spectrum of the sampled waveform is the original signal with 



������������������
�����������
��	
 
 

exact replicas of itself spaced about multiples of the sampling frequency. Figure 5.14(d) 
illustrates the frequency spectrum of a signal that is sampled at exactly twice the maximum 
frequency of the original signal, showing that the replicas of the original signal just touch. 
Oversampling the original signal, as shown in Figure 5.14(e) separates the input signal bands 
by a wider frequency. This is shown in Figure 5.14(f). Undersampling narrows the sep-
aration between the bands so that they fold over each other and result in aliasing, as 
demonstrated in Figure 5.14(g) and Figure 5.14(h). Where this occurs, the resultant signal 
appears as an aliased signal between DC and the Nyquist frequency, and cannot be 
distinguished from valid data. 

 
f(t)

t

2T 4T 6T 8T

f(t)

t

f(t)

t
T

T 2T 3T 8T

T
2

T 2T 3T 8T

f(t)

t

F(   )T

TT 0
2

T 0
2

F(   )T

TT 0
2

T 0
2

F(   )T

T

T 0 T 02T 02T 0
B2
T

F(   )T

T

T 0 T 02T 02T 0
B4
T

a) Time-varying band limited signal b) Frequency Spectrum

c) Signal sampled at Nyquist rate d) Spectral replicas generated when sampling at Nyquist rate

e) Over sampling a time varying signal f) Spectral replicas generated when over sampling

g) Under sampling a time varying signal h) Spectral replicas generated when under sampling  

Figure 5.14 
Demonstrating the effect of aliasing in the frequency domain 

Consider a band-limited signal, which contains three sinusoidal waveforms, a 25 Hz wave-
form representing the wanted signal, a 50 Hz signal, which is unwanted mains hum, and an 
unwanted high frequency noise signal at 260 Hz. Figure 5.15(a) shows the frequency 
spectrum of this band-limited signal. 



�	�������������	����
����
������������
���������������������������
���
�

 

 

Figure 5.15 
Frequency spectrum of original and sampled signals 

The frequency spectrum of the reconstructed signal, sampled by an A/D board at fs = 80 Hz 
is shown in Figure 5.15(b). Frequencies below the Nyquist frequency, fs/2 = 40 Hz, in the 
original signal spectrum, appear correctly. However, replicas of the signal frequencies above 
the Nyquist frequency are reproduced about multiples of the sampling frequency and 
therefore appear as aliases. A2 and A3 are aliases of the original signals F2 and F3 res-
pectively. The alias frequency of any signal frequency can be simply calculated by the 
formula: 

Alias Freq = ABS (closest integer multiple of sampling frequency – signal frequency) 
Alias A2 = [80 – 50] = 30 Hz 
Alias A3 = [(3)80 – 260] = 20 Hz 
In this example, the resulting aliases are very close to the frequency of the signal of interest 

and would be very difficult to remove. Once an aliased signal has been introduced, it is 
almost impossible to remove it by digital filtering methods. 

5.5.3 Preventing aliasing 
One method of preventing aliasing is by filtering the input signal with a low pass filter with a 
cutoff point set to the Nyquist frequency or half the sampling rate. This type of filter is 
known as an antialiasing filter. A perfect antialiasing filter would simulate the brick-wall 
response of an ideal low pass filter, as shown in Figure 5.16, rejecting all unwanted fre-
quency components above the Nyquist frequency. Thus, by using this filter the input signal 
could be sampled at twice the Nyquist rate without aliasing. 



������������������
�����������
��	� 
 

 

Figure 5.16 
Ideal low pass filter response 

Unfortunately, real filters do not simulate ideal filters, and in fact exhibit some attenuation 
(dB/octave) near the cutoff frequency. As shown in Figure 5.17, this roll-off may not be steep 
enough to totally eliminate all the higher frequency components. Although attenuated, these 
higher frequency components can, and will, fold down to the signal band of interest. 

 

 

Figure 5.17 
Practical low pass filter response 

Therefore, to accommodate the filter cutoff frequency and roll-off, the sampling rate should 
be increased. Using simple passive antialiasing filters, it is recommended that the sampling 



�	
������������	����
����
������������
���������������������������
���
�

rate be a minimum of about five times the cutoff frequency. Non-periodic wave-forms can be 
oversampled by about ten times. 

High performance antialiasing filters with very steep roll off near the cutoff frequency, as 
shown in Figure 5.18, allow the signal to be sampled at two to three times the filter cutoff 
frequency. 

 

Figure 5.18 
Steep roll-off antialiasing filter 

5.5.4 Practical examples 
A common data acquisition application is machine vibration analysis. All machines resonate 
at certain frequencies, both under normal operation and when driven by an external source. In 
this example, strain gauges were placed on the machine and the output signal sampled, 
digitized (yielding a time domain plot, see Figure 5.19(a) and converted into the frequency 
domain (for example, using FFT). 

The spectrum resulting from sampling at 50 kHz is shown in Figure 5.19(b). It has two 
resonant frequency peaks, one around 4 kHz, and another slightly above 5 kHz. The machine 
vibration analyst knows that the 4 kHz component corresponds to the machine’s rotational 
speed, but the 5 kHz component is a mystery. Passing the input signal through a 10 kHz 
cutoff antialiasing filter with subsequent resampling, yields the spectrum in Figure 5.19(c), 
clearly revealing the 5 kHz component to be an alias. Indeed, sampling the original signal 
(without the antialiasing filter) at 100 kHz yields the spectrum in Figure 5.19(d) and shows 
that an actual frequency component, present in the vibration signal, of 45 kHz has been 
aliased down to 5 kHz when sampled at 50 kHz. 



������������������
�����������
��	� 
 

 

Figure 5.19 
Aliasing due to undersampling 

In the example of machine vibration analysis, the frequency components were clearly 
visible and constant. However, in the case of speech digitization or speech analysis, the 
desired signal consists of many frequency components that vary quickly and unpredictably. 
An application may require spoken messages to be digitized and stored for later playback. 

As most speech is composed of frequency components below 5 kHz, digitizing the in-
coming signal at 10 kHz appears to be adequate and places only low demand on memory 
usage. Unfortunately, an attempt to digitize a message signal from a microphone in this way 
resulted in the message so buried in extraneous hums, pops, and whines that it could hardly 
be used. The frequency spectrum of the sampled signal is shown in Figure 5.20(a). 

In the assumption that high frequencies present on the input were aliasing down, a 5 kHz, 
antialiasing filter was put in place, leading to the spectrum in Figure 5.20(b). The spectrum 
shows little difference from the unfiltered signal’s spectrum. Increasing the sample rate (to 
100 kHz, Figure 5.20(c)) shows why: although attenuated, components above the filter’s 
cutoff point are still present and do alias down. The filter had a roll-off of 24 dB/octave and 
the real-world properties of the filter allowed the attenuated high-frequency components to 
fold down into the band of interest. Practically, solutions are using filters with greater roll-off 
(reducing the magnitude of high-frequency components that might alias) or sampling at a 
higher rate (frequencies in the new sampling band do not fold down). 



�
�������������	����
����
������������
���������������������������
���
�

 

Figure 5.20 
Many aliases combined with a speech signal 

It could be assumed that aliasing is a phenomenon associated with high frequencies, and 
that low frequencies (such as thermocouple temperature signals) are immune to this effect. 
Temperature changes so slowly that the input signal is almost DC; it seems therefore rea-
sonable to sample it extremely slowly and not be concerned with frequency analyses. 

However, if the input signal contains a noise spike as shown in Figure 5.21(a), the resulting 
spectrum results in a noise floor around –60 dB, shown in Figure 5.21(b). This is because an 
impulse spike in the time domain spreads itself out evenly in the frequency domain. Thus, 
when sampled at a low frequency, the high-frequency components of the noise spike alias 
down and add to the low frequency components. The extra energy of these added frequencies 
causes the temperature application to oscillate. If a low pass filter is used, the spike – with its 
equivalent high-frequency components – is removed (as shown in the time domain in Figure 
5.21(c). The spectrum corresponding to this (Figure 5.21(d)) now has a noise floor of –80 to  
–90 dB, which does not affect the readings obtained by the A/D board. 



������������������
�����������
��
� 
 

 

Figure 5.21 
A spike causes wideband aliasing 

��%� �� !�
������"�
$����

These techniques are discussed in the following sections: 
• Continuous channel scanning 
• Simultaneous sampling 
• Block mode operations 

5.6.1 Continuous channel scanning 
The method of sampling that facilitates the connecting of the required input channel to the 
A/D converter at a constant rate is known as continuous channel scanning. Continuous 
channel scanning allows channels to be sampled in a pre-determined and arbitrary order (e.g. 
channel 5, channel 1, channel 11), as well as at different sampling rates. An example of this 
would be the sampling of three channels in the following order (channel 5, channel 1, channel 
11, channel 1). Channel 1 is being sampled at twice the rate as channels 5 & 11, which for an 
A/D board with throughput of 100 kHz represents a sampling rate of 50 kHz. Channels 5 & 
11 are sampled at 25 kHz. There are two methods of continuous channel scanning, either 
under software control or by on-board hardware control. 

Software channel scanning 
Where continuous channel scanning is performed by software the address of the channel to be 
sampled is written to the multiplexer and the gain setting sent to the programmable gain 
amplifier (PGA), where one is fitted. Once the signal is settled, an A/D conversion is 



�
�������������	����
����
������������
���������������������������
���
�

initiated. The data is subsequently read and transferred to the PC’s memory. This incurs a 
large software overhead. Background operation using interrupts is difficult and slower than 
polled I/O and accurately timed samples and higher speed data transfer methods such as 
DMA and repeat instructions are impossible in either case. 

Hardware channel scanning 
Continuous channel scanning is implemented in hardware using channel-gain arrays (CGA). 
These programmable memory buffers contain a list of the channels and the gain settings 
required for each input channel to be sampled. When the A/D board begins sampling, input 
channels are sampled in the sequence loaded into the channel-gain array.   

The use of on-board channel-gain arrays (CGA) overcomes many of the limitations asso-
ciated with channel scanning using software and has the following advantages: 

• The channel sequence information may be setup once and then sampling initiated 
(and repeated) with a single command. Once initiated, the sampling process is 
controlled by the A/D board’s hardware. 

• Arbitrary sample sequences may be defined. 
• Within the limitations on the size of the CGA, different sampling frequencies may 

be specified for different channels. 
• The speed of software-transfer methods such as interrupt and polled I/O is greatly 

increased, in many cases doubled. This is due to the fact that delays caused by the 
host computer transferring channel and gain information before each sample is 
taken, are avoided. 

• Very accurate timing is achievable since the board hardware is optimized to 
control the individual sub-systems on the board. 

• Advanced transfer methods such as DMA and repeat instructions are possible. 
DMA transfer is controlled directly by the hardware on the A/D board and the 
host computer. This is not a very flexible arrangement, since it does not allow 
intervention by software to change the channels being scanned once a DMA 
transfer has been initiated. A/D boards, which are capable of DMA but do not 
have channel-gain arrays may only perform DMA transfers from a single input 
channel, whose address and required gain is setup by software before the DMA 
transfer is initiated. Where channel-gain arrays are implemented, the on-board 
hardware will automatically change the address and gain settings during the DMA 
transfer. Where repeat instructions are used to transfer information, usually from 
an on-board FIFO, the sampling of multiple channels must continue to be 
performed in the background. On A/D boards, which do not have channel-gain 
arrays, repeat instruction transfers may only be performed on a single input 
channel whose address and required gain is setup by software before the repeat 
instruction transfer is initiated. 

Practical applications 
Some of the practical applications, which utilize the flexibility in the selection and throughput 
of individual channels, using hardware channel scanning, are detailed below. 

Sampling different channels at different frequencies 
When signals with different frequencies are sampled (for example, a heart rate 
electrocardiogram (ECG) with 300 beats/min and an electroencephalogram (EEG) with a 
frequency of 5 kHz), it is much more memory-efficient to sample each channel at around its 



������������������
�����������
��
� 
 

Nyquist rate instead of scanning all channels at the rate of the highest frequency channel. In 
the example above, if the ECG rate is 2 kHz and the EEG rate is 20 kHz, then the ratio of the 
two channels is 1:10. The CGA could therefore be setup with ten EEG readings followed by 
one ECG reading with a scan clock of, say, 22 kHz. (Note that this introduces a phase shift in 
the EEG readings since every eleventh reading is an ECG reading. This can be alleviated by 
ensuring that all channels are sampled evenly.) 

As a common ECG waveform is determined from three electrodes, a sequence of EEG, 
ECG1, EEG, ECG2, EEG, ECG3 with scan clock of 40 kHz yields an EEG rate of 20 kHz, and 
the sampling rate for each of the three ECG electrodes is 6.667 kHz. 

Variable timing and scan rate 
If the board has an external trigger and/or sample clock input, variable timing and scan rates 
are possible. The CGA is programmed and the board is simply left to wait for the external 
trigger. When the trigger occurs, the board automatically takes the required number of sam-
ples. 

In machine analysis, the sample clock may be connected to an output on the machine 
proportional to its rotational speed. As the machine speeds up, the sample rate increases. Both 
these schemes allow for more efficient data collection by reducing the amount of redundant 
data that is acquired. 

Post acquisition auto-ranging 
While the CGA allows different gains to be set, sometimes the optimum gain is not known in 
advance. Using a gain factor that is certain not to saturate the A/D will result in poor accuracy 
when the input signal is at a low level, while a high gain may saturate the A/D when the 
opposite occurs, yielding meaningless readings. What can be done is programming the CGA 
to take two or more readings for the channel; for example, one might be taken at unity gain 
and the next at a gain of 10. If the first reading is less than 1/10 of the full-scale, the second is 
used for greater precision. An example of an application would be the measuring of an 
object’s response to destructive testing – for example, to shockwaves. As the amplitude of the 
response is unpredictable and the test often renders the object unusable for further testing, it 
is imperative that the first, and perhaps only, set of readings are useable. 

While the use of channel-gain arrays on A/D boards has greatly increased the flexibility in 
the selection and throughput of individual channels, continuous hardware channel scanning 
does not provide adequate results for applications that require the simultaneous sampling of 
multiple channels. This requirement is discussed in the following section. 

5.6.2 Simultaneous sampling 
When the input multiplexer switches between channels, a time skew is generated between 
each channel sampled. On an A/D board being sampled at its maximum total throughput of 
200 kHz, the minimum channel-to-channel time skew between samples on different channels 
is 5 µs. Since the skew is additive from channel to channel, the total time skew between the 
first and last samples, when 16 channels are being sampled, is 80 µs. Time skew between 
signal measurements taken on different channels can lead to an inaccurate portrayal of the 
events that generated the signals as demonstrated in Figure 5.22. 



�
	������������	����
����
������������
���������������������������
���
�

 

Figure 5.22 
Time skew between channels 

In Figure 5.22, channel 1 is sampled properly since it is deemed the reference channel. 
Channel 2 exhibits time skew as samples 1 and 4 show significant errors relative to their 
actual values at the time channel 1 was sampled. 

Where the time relationship between each channel sampled is unimportant, or the skew is 
negligible compared to the speed of the channel scan rate, such delays are not significant. In 
many applications, however, such as those dealing with accurate phase measurements or 
high-speed transient analysis, time skew between channels is unacceptable, since it is crucial 
to determine the output of several signals on different channels, at precisely the same time. 

To avoid the timing errors introduced when continuously sampling from one input channel 
to the next, special applications require A/D boards capable of simultaneous sampling. These 
A/D boards are fitted with so-called simultaneous sample and hold devices on all input 
channels. The sample and hold device on each input channel holds the sampled data until the 
A/D converter can scan each channel. 

The maximum possible difference in sampling time between the channels, usually 
introduced as a result of variations in the aperture time of the individual sample and hold 
devices, is the time variable known as the aperture matching, or sometimes known as aperture 
uncertainty. This measurement reflects the maximum possible difference in sampling time 
between channels. The aperture uncertainty can be calculated from the maximum input 
frequency of the signal to be sampled. For an error of less than 1-bit on a 12-bit A/D board, 
this is about 800 ns at 100 kHz, 1.6 ns at 50 kHz, and so on. Boards with aperture matching 
of the order of 0.4 ns (±0.2 ns) are available. 

Dedicated plug-in boards that perform the function of simultaneous sampling, when it is not 
available on the main A/D board, can be interfaced easily to the A/D board with the necessary 
conversion strobe signals. 

5.6.3 Block mode operations 
Where channel-gain arrays are available on an A/D board, an additional method by which a 
group of channels can be sampled almost simultaneously becomes available. Block mode 
triggering, sometimes known as burst mode triggering or interval scanning, creates the effect 
of simultaneous sampling, while maintaining the lower cost benefits of continuous channel 
scanning. 



������������������
�����������
��

 
 

When operating in continuous scanning mode, conventional A/D conversion triggering 
works as follows: The sample trigger source, either from software, an on-board pacer clock, 
or an external clock, is programmed for a specified sample rate. Each sample trigger initiates 
a single A/D conversion on the next channel in the channel/gain array and every sample is 
evenly spaced in time. 

Block mode triggering initiates an A/D conversion on all the required input channels at the 
maximum sampling rate of the A/D board, every time a sample trigger pulse occurs. A 
second counter is used to trigger the sampling of each of the channels at the maximum 
sampling rate. The number of samples to be taken in each block is typically stored by 
software in an on-board buffer, while the channel and gain for each sample in the block is 
read from the channel/gain array. The scan sequence is repeated at the next sample trigger 
pulse. 

Consider an example where four channels are being sampled at a total throughput rate of  
20 kHz, corresponding to a channel scan rate of 5 kHz. Figure 5.23 shows that in continuous 
scanning mode, the total scan time is 200 µs, with the samples evenly spaced every 50 µs. In 
block trigger mode, the four samples are taken in a single scan sequence at the maximum 
throughput of the board. Assuming the board is capable of taking samples at 200 kHz, the 
time between each of these four samples is 5 µs, while the total time taken for all the samples 
is 20 µs instead of 200 µs. 

 

0 1 2 3 0 1

Sample Period = 50 microseconds

Scan Period  200  microseconds

Block Acquisition Time  20 microseconds

This causes
all these

00 11 22 33

Acquisition Time  5  microseconds

 

Figure 5.23 
Conventional and burst trigger scanning 

Where the sampling rate remains the same, that is, a sample trigger occurs every 50 µs, the 
throughput of the board is increased by the number of samples taken in each sample block. In 
this case, the throughput would be increased to 80 kHz. To maintain the total throughput rate 
at 20 kHz the sampling rate must be reduced by the number of channels sampled in each 
block. This is called the burst trigger rate and can be calculated by dividing the throughput 
required by the number of channels to be sampled. 

 
Burst trigger rate = Required total throughput 

      No channels 



�
�������������	����
����
������������
���������������������������
���
�

For each burst trigger, the A/D board generates the required number of A/D conversion 
triggers at the maximum speed of the board. Even though the samples in a block (except the 
first sample) are taken at different times to the conventional triggered samples, the throughput 
of each channel and the time between samples on the same channel remains the same. 

When using block mode triggering, data appears at the output of the A/D converter at the 
maximum throughput of the board. Therefore, for high-speed boards, the data transfer rate 
and therefore the method of transferring the data may need to be considered. For a large block 
count, DMA transfer, where available, will need to be used, while for small block counts, 
polled I/O or interrupt I/O, may be used where an on-board FIFO is utilized. 

A little care must be taken when using block mode triggering with variable channel rate 
sampling, where some channels are sampled more often than others. It is possible that very 
large phase shifts are introduced because of the different times at which the two methods 
sample the data. Where variable channel rate sampling is used, conventional continuous 
channel scanning should be used. 

��&� �!��
�����"�	��"!���

Throughput, or the speed at which an A/D board can acquire data, is always a consideration 
in data acquisition systems. There is, however, some confusion in the throughput figures 
quoted by board manufacturers when relating the performance of a particular board. Often 
these figures relate to the maximum data acquisition rate and can depend on the particular 
method of storing values into memory. Herein lies the real key to the throughput of data 
acquisition boards. 

Strictly speaking, the throughput specification of an A/D board indicates the total number 
of analog signal input samples that can be converted to their digital equivalents per second. 
As it is usual for several analog input circuits to share a common A/D converter, the number 
of input channels in use also affects throughput. Therefore, the sample rate of each channel is 
the total throughput divided by the number of channels sampled. 

 
Maximum throughput / channel = Total throughput  

          # Channels used 
 

For example, if you wish to sample four channels at 50 kHz each, you need an A/D board 
with a throughput of at least 200 kHz (four inputs X 50 KHz / input). 

A/D board conversion throughput is determined by: 
• Acquisition time: the time needed by the signal conditioning and acquisition 

circuitry (multiplexer, amplifier, filter and sample / hold), to obtain and present an 
accurate analog input signal to the A/D converter. 

• Conversion time: the time needed to perform the actual A/D conversion and have 
the digital output available in a register or buffer to be transferred to memory. 
Here the speed (determined by the type of A/D conversion process or combination 
of processes) is paramount. High speed, high quality A/Ds with low drift and 
requiring less calibration will obviously increase the cost of a data acquisition 
board. 

Total throughput is also determined by: 
• Transfer time: the time required to transfer data to and/or from the data 

acquisition board to memory, where software can determine if it is to be displayed 
and/or transferred to a permanent storage location. The transfer rate of the data 



������������������
�����������
��
� 
 

acquisition system, is the slowest of either the board throughput, the data transfer 
rate or, if relevant, the storage rate. 

In most data acquisition systems the storage rate is not significant, since the amount of data 
involved is small enough to allow it all to be stored in memory, left there, displayed if 
necessary, and stored later. The transfer rate of the link from memory to permanent data 
storage is therefore not important. 

Where the volume of data acquired is greater than the memory available to it, and 
particularly when the required throughput is very high, then alternative methods of storing the 
data must be found. 

��'� �����	��
��

D/A boards convert digital signals from a host computer into an analog format for use by 
external devices such as actuators in controlling or stimulating a system or process. The 
principle component of all D/A boards is the digital-to-analog converter (D/A Converter).   

D/A boards fall into two main categories: 
• Waveform generation boards 
• Analog output boards 

Waveform generation D/A boards 
As their name would imply waveform generation D/A boards are used in the high speed 

generation of analog waveforms, typically in a laboratory environment for the reproduction or 
simulation of noise, audio signals, power line signals and also for many other control 
applications.   

The functional diagram of a waveform generation D/A board is shown in Figure 5.24 and 
comprises the following main components: 

• D/A converter (DAC) 
• Output amplifier/buffer 
• FIFO buffer 
• Timing system 
• Expansion bus interface 
 

Each of these components plays an important role in determining the speed, accuracy, and 
flexibility with which the D/A board can generate analog waveforms. 

 

 

Figure 5.24 
Functional diagram of a waveform generation D/A board 



�

������������	����
����
������������
���������������������������
���
�

Analog output D/A boards 
Unlike high speed, high resolution, waveform generation boards, more typical analog 

output D/A boards, as shown in Figure 5.25 and used for example in industrial control, are 
not designed for outputting precise waveforms. Instead, they maintain constant output levels 
unless instructed otherwise. While multi-function data acquisition boards often include two or 
more analog output channels, applications which require many dedicated analog outputs are 
most efficiently provided for by dedicated analog output boards.   

Whether part of a multi-function DAC board or a dedicated analog output D/A board, the 
D/A conversion sub-system is straightforward in design and can be divided into two main 
functional components: 

• D/A converter 
• Output amplifier and buffer 
 
 

 

Figure 5.25 
Functional diagram of an analog output D/A board 

Analog output D/A boards typically have between two and sixteen dedicated output 
channels, each with its own D/A converter and where required output buffer/amplifier. 

5.8.1 Digital to analog converters 
Digital to analog converters (D/A converters or DACs) accept an n-bit parallel digital code as 
input and provide an analog current or voltage as output. The primary output value is a 
current, however, this is easily converted to a voltage using an operational amplifier. A D/A 
converter consists principally of a network of analog switches, controlled by the input code, 
and a network of precision weighted resistors. The switches control currents or voltages 
derived from a precise reference voltage and provide an analog output current or voltage. The 
output current/voltage represents the ratio of the input code to the full-scale voltage of the 
reference source. The main types of current output DACs and their specific important 
parameters are discussed in the following sections. 

Weighted-current source D/A converters 
The weighted-current source method of implementing a D/A converter is shown in Figure 
5.26. 



������������������
�����������
��
� 
 

 

Figure 5.26 
N-bit weighted-current source D/A converter 

This method creates an output current, IT, which is the summation of the weighted currents 
from each of the parallel transistor sources; the current contributed by each transistor set by 
the resistances R, 2R, 4R, 8R, etc. The selection of the currents to be summed is determined 
by the digital code appearing at the input. For example, if the digital voltage at the MSB is 
logic low, current will flow through the forward biased diode rather than through the collector 
of the transistor, and the transistor will remain off. 

When the digital voltage at the MSB is logic high, the current flowing through the collector 
and emitter of the transistor is equal to VREF/R. A stable reference voltage with suitable tem-
perature compensation (base-to-emitter for each transistor) ensures that each transistor pro-
duces a constant emitter current inversely proportional to the collector resistance. 

Since the output from the inverting summing amplifier is V0 = –IT R/2 the output voltage is 
directly proportional to the voltage reference according to the equation 
V0 = VREF (B02-1 + B12-2 … + Bn-12n-1) 

Weighted codes other than straight binary can be converted by proper choice of the 
weighting resistors. 

R-2R ladder D/A converters 
A D/A converter which uses resistors of only two values, R and 2R, is shown in Figure 5.27. 
 

 

Figure 5.27 
N-bit R-2R ladder D/A converter 



���������������	����
����
������������
���������������������������
���
�

Like the weighted-current source network, this DAC produces an output current IT, 
proportional to the input code and the voltage reference source. The principle of operation of 
the ladder network relies on the binary divisions of the current as it flows through the ladder 
resistance network. A simple resistance calculation at point A shows that the resistance to the 
right adds up to 2R, and the resistance to the left is 2R. Hence the current flowing in the 
resistive leg of the MSB is I0 = VREF/3R. At node A, this current splits, half flowing to the left 
of node A and half flowing into node B. At node B the current splits in half again, half 
flowing into node C and half flowing to ground through the resistance 2R in the leg of this, 
the next most significant bit. This continues, with the current from the LSB being divided by 
2n when it reaches the summing junction of the operational amplifier. The same analysis can 
be applied for each switch that connects the voltage reference source to the ladder network, 
with the current contributed by each finally being added at the operational amplifier’s 
summing junction. 

The main advantages, which make this type of DAC popular, are the easy matching of 
resistances (R or 2R), the constant input resistance for the output amplifier, and the fact that 
low resistor values can be used, thus ensuring high-speed operations. 

5.8.2 Parameters of D/A converters 
Most of the performance parameters and errors associated with A/D converters are applicable 
to D/A converters. In addition, several specifications for D/A converters determine the 
quality of the output signal produced. These are settling time, slew rate, and resolution. 

Resolution 
This is a measure of the size of the output step associated with a change of 1 LSB at the input. 
A greater number of bits, in the digital input code generating the analog output, reduce the 
magnitude of each output voltage increment. This allows the D/A converter to generate a 
more smoothly changing output signal for applications, where there is a wide dynamic output 
range. 

Output range 
Output from a D/A converter can be in two forms, current, and voltage. If a DAC produces a 
current output where the application requires an output voltage, an external operational 
amplifier is required. 

The feedback resistors that would be used to set the offset, gain, and therefore range of the 
output, are usually provided within the D/A converter. Internal resistors are provided which 
track the temperature characteristics of the internal resistors of the ladder network. This 
eliminates the need to use an external resistance, which may introduce tracking errors. If 
more than one feedback resistor is provided, a choice of analog output ranges is available. 
Bipolar output voltage ranges are usually obtained by simply on-setting the unipolar offset 
voltage, with an internal bipolar offset resistor. 

The selection and range of a unipolar or bipolar output range is commonly made with 
jumper connections. 

Input data codes 
There are a number of ways in which the digital data can be presented to D/A converters. The 
type of coding (i.e. binary, binary offset, two’s complement, BCD, arbitrary etc), and its 
sense (positive true and negative true) must be applicable to the D/A converter used. 

 



������������������
�����������
���� 
 

Settling time 
In a practical D/A converter, there is a limit to the rate at which the converter can acquire new 
analog output values, because the analog output signal produced takes a finite time to settle to 
a new value, in response to a change in digital input. The settling time is defined as the time 
required for the output to reach, and remain, within a given error margin of the final value, 
usually a percentage of full-scale or ±1/2 LSB, following a prescribed change at the input 
(usually a full-scale change). This figure takes into account all internal factors affecting the 
settling time, i.e. turning the switches on and off; current changes within the resistor network, 
and the time required by the op-amp or buffer outputs to settle within their error bands. 

The settling time of the D/A converter, especially of high speed DACs, is prolonged by the 
occurrence of sometimes-large transient errors in the output. Glitches are spikes in the output 
of a D/A converter that may result when, due to the occurrence of an intermediate state, the 
output is driven toward a value opposite to its final value. An intermediate state is the result 
of one or more switches in the DAC being faster than the others are. As an example, consider 
the most major transition of a DAC, when the input changes from 100…000 to 011...111. If 
the MSB switch changes faster, an intermediate state of 000...000 could occur, momentarily 
driving the output of the DAC to 0 V before returning the correct value. This is shown in 
Figure 5.28. 

 
10000000

01111111

Glitch

With Ideal De-glitcher

 

Figure 5.28 
Glitch occurring at the output of a DAC during the major transition 

The better matched the switching times and the faster the switches, the smaller will be the 
energy contained in the glitch. As the size of the glitch is not proportional to the signal 
change, linear filtering may be unsuccessful and can in fact make matters worse. De-
glitchers, in the form of a sample and hold circuitry, are often included as part of the D/A 
converter, holding the outputs constant at the previous value until the switches reach 
equilibrium, then sampling and holding the new value. The de-glitcher circuitry, though 
cleaning up the output, will result in a reduction of the update rate. 

Slew rate 
The slew rate is the maximum rate of change that the DAC can produce on the output signal, 
usually limited by the slew rate of the amplifier used at its output. 

Update rate 
The speed or update rate of a DAC is a function of both the settling time and the slew rate 
and is critical in determining the maximum frequency of an output waveform that can be 
produced. Therefore, a DAC with a small settling time and high slew rate can generate high 
frequency signals, because little time is needed to accurately change the output to a new 
voltage level. 



���������������	����
����
������������
���������������������������
���
�

The generation of high frequency signals in the audio range is one application where a high 
slew rate and small settling time are required to reduce over-tones and interference generated 
as the output stabilizes. In motion control applications, where the system responds more 
slowly to the output voltage, the settling time and slew rate are less critical. The motor acts 
like a damper and reduces the effect of the oscillating output. Another application that does 
not require fast D/A conversion is a voltage source, which controls a heater, since the heater 
responds relatively slowly to a voltage change. 

5.8.3 Functional characteristics of D/A boards 
The important functional characteristics of D/A Boards are given below. 

Double buffered input 
Double buffering of input latches internal to the D/A converter allows a complete data word 
to be stored in the first register buffer, and then transferred to the second buffer for con-
version. This prevents invalid partial data from reaching the DAC and generating spurious 
output, especially when updating a 12-bit DAC via an 8-bit data bus. 

Simultaneous update 
Double buffering of the inputs of DACs used commonly on D/A boards allows the 
simultaneous update of the outputs of the DAC of each channel. When programmed for 
simultaneous update, the data written to the registers of the D/A converters has no effect on 
the output value until the board is commanded to update the output of all channels 
simultaneously. 

Remote sensing 
A remote sensing facility allows the D/A converter of each channel to compensate for voltage 
drops over long output leads. 

Offset and gain adjustment 
Where the output operational amplifier is not provided on the DAC itself, an external 
amplifier is used. As for instrumentation amplifiers, the settling time and slew rate are the 
most important parameters to consider, since it is these that affect the performance (update 
rate) of the analog outputs. 

Offset and gain errors from the D/A converter are most commonly adjusted using the offset 
and gain trims of the output amplifier. 

5.8.4 Memory (FIFO) buffer 
One of the features that differentiate a waveform generator board from an analog output 
board is the inclusion of on-board memory, or I/O in the form of a FIFO (first in first out) 
buffer. This ranges in size from 1024 bytes to 64 Kbytes. 

The FIFO buffer(s) form a fast temporary memory area, addressed as I/O that holds a pre-
defined array of data points. This gives great flexibility in creating arbitrary waveforms. Once 
stored in the FIFO, a single cycle of the waveform can be output, or the waveform can be 
continuously repeated without intervention from the PC. This allows full processor power to 
be dedicated to other tasks, including calculation of waveform data. It takes only a few 
milliseconds to load a modified or alternate waveform from memory. In continuous cycling 
mode, a delay can be programmed between cycles. 



������������������
�����������
���� 
 

Waveform generation boards with more than one channel to be output, either simul-
taneously or sequentially, require that the digital information stored in the FIFO must also 
include the address of the channel to which the data is to be output. 

5.8.5 Timing circuitry 
Analog output boards, which do not have FIFOs do not require timing control circuitry. 
Output of any generated wave-shapes is performed by polled I/O. Using this method, to out-
put waveforms, does not guarantee strict or accurate timing between the update of the 
outputs. The maximum update rate of the waveform output is determined by the maximum 
transfer rate of data to the D/A converters on the board. 

Where accurate frequency and amplitude control are required, the update rate of the board 
must be very accurate and well controlled. High-speed waveform generation boards are 
provided with either on-board programmable high-speed counter/timer circuitry, to generate 
precise high-speed conversion probe signals, or facilities at least, to utilize an external signal 
as the pacer clock. Clocking circuits are made up of a frequency source, which is either an 
on-board oscillator between 400 kHz and 10 MHz or an external user supplied signal, and a 
pre-scaler/divider network, typically a counter/timer chip, that slows the clock signal down to 
more usable values. The clock frequency can be as DC Hz or up to the maximum update rate 
of the board. 

D/A conversions can be initiated by triggers – either by a software trigger (writing to the 
D/A converter directly) or an external hardware trigger. Data conversions can be synchro-
nized with external events with the use of external clock frequency sources and external 
triggers. The external trigger event is usually in the form of a digital or analog signal and will 
begin the acquisition depending on the active edge if the trigger is a digital signal, or the level 
and slope, if the trigger is an analog signal. 

5.8.6 Output amplifier buffer 
Operational amplifiers connected to the output of D/A converters are most commonly used 
where the on-board D/A converter produces a current output and the application requires an 
output voltage. An operational amplifier connected in the configuration shown in Figure 5.26 
and Figure 5.27 can be used to convert the current to a voltage. Operational amplifiers are 
also used at the output of D/A converters to provide alternative voltage output ranges or 
higher current output. The feedback resistors that would be used to set the offset, gain, and 
therefore range of the output, are usually provided within the D/A converter. This allows 
accurate tracking of the temperature characteristics of the internal resistors of the ladder 
network of the DAC and eliminates the need to use an external resistance that may introduce 
tracking errors. If more than one feedback resistor is provided, a choice of analog output 
ranges is available. Bipolar output voltage ranges are usually obtained by simply offsetting 
the unipolar offset voltage, with a bipolar offset resistor internal to the D/A converter. 

5.8.7 Expansion bus interface 
The expansion bus interface provides the control circuitry and signals used to transfer data 
from the PC’s memory, either directly to the D/A converter or the on-board FIFO, for sending 
configuration information (e.g. number of times to repeat a waveform or setting the clock 
source and frequency) or other commands (e.g. software triggers) to the board.   

It includes: 



��	������������	����
����
������������
���������������������������
���
�

• The plug-in connector, which provides the hardware interface for connecting all 
control and data signals, to the expansion bus (e.g. ISA, EISA or PCI) of the host 
computer 

• The circuitry, which determines the base address of the board – this is usually a 
selectable DIP switch and defines the addresses of each memory and I/O location 
on the D/A board 

• The source and level of interrupt signals generated. Interrupt signals can be 
programmed to occur at the end of a single conversion or at the end of one cycle 
of a waveform – the configuration of the interrupt levels used is commonly 
selected by on-board links 

• The DMA control signals and the configuration of the DMA level(s) used – the 
configuration of the DMA levels used is typically selected by on-board links 

• Normal I/O to and from I/O, address locations on the board 

��(� �
�
������)��	��
��

Digital I/O interfaces are commonly used in a PC based DAQ systems to provide monitoring 
and control for industrial processes, generate patterns for testing in the laboratory and com-
municate with peripheral equipment such as data loggers and printers which have parallel 
digital I/O capabilities. 

The digital I/O interface of any DAQ board is that component of the board which consists 
of ICs capable of input or output of TTL-compatible signals. A signal is defined to be TTL-
compatible if its logic low level is between 0 V and 0.8 V and its logic high level is between 
2.2 V and 5.5 V. Typically, the digital interface is a number of digital I/O lines grouped into 
ports, each port usually consisting of four or eight lines, although this is specific to the 
particular board used. It is most common for all the digital I/O lines of a particular port to be 
configured for either input or output, although there are circumstances where the direction of 
individual lines of a port can be configured independently. By reading from or writing to a 
port, the logical states of multiple digital lines can be simultaneously retrieved or set. The 
important parameters of digital I/O interfaces include the number of digital lines available 
and how many are configurable for input and output (or both), the rate at which data can be 
transferred on the digital lines, and the device drive capability of the digital output lines. 

Many multi-purpose plug-in DAQ boards currently on the market, including A/D boards, 
D/A boards, and counter/timer boards, provide digital I/O interfaces with a varying number of 
digital I/O lines. Where the digital I/O capabilities of these DAQ boards does not meet the 
requirements of a specific application, or, a single digital I/O board is all that is required, then 
specialized and dedicated plug-in digital I/O boards are used. A typical digital I/O board is 
shown in Figure 5.29. 



������������������
�����������
���
 
 

 

Figure 5.29  
Typical digital I/O board block diagram 

Figure 5.29 shows a typical digital input/output circuit. A data acquisition card or device 
will often combine the inputs and outputs on the same channel. The I/O channels will do 
either inputs or outputs but not both at the same time. The software configures the I/O chan-
nel on the card or device as either an input or output. The voltage applied to the channel, 
defined as an input, is usually in the form of a ground or common. This ground biases the 
LED of the opto-coupler on. The LED in the opto-coupler shines on the base of the transistor 
and turns it on. This in turn tells the input circuitry in the card that the input is ‘on’. 

When the channel is configured as a digital output the outgoing ground turns on the 
transistor. This supplies a ground to the output channel. This ground is used by the device in 
the field, a relay or sold state relay, to turn something on. The chips that are used to do digital 
output often have either diode or capacitor snubber networks on their outputs. These built in 
snubber networks are not intended to replace external networks that are required on long 
lines. 

Non-latched digital I/O 
Non-latched digital I/O is the mode of operation in which the state of a digital output line is 
updated immediately a digital value is written to the digital I/O port. In addition, for digital 
I/O lines configured as input lines, the current digital value present on the line when the port 
is read is the value that is returned. Non-latched digital I/O is the most common and simplest 
implementation used in digital I/O interfaces and is supported by all boards with digital I/O 
lines. The direction of the digital lines of a digital I/O port is conveniently set by software and 
can be changed as many times as required. 



���������������	����
����
������������
���������������������������
���
�

Latched digital I/O 
For applications that require handshaking of digital data, latched digital I/O is used. In this 
mode of operation, an external signal determines when the data is either input to or output 
from the digital I/O port. The signals that are used to control the transfer of data are 
sometimes known as handshake lines. They are used to ensure that the digital interface is 
ready to input digital information appearing at the input lines, sent from a remote device or 
instrument, or a remote device or instrument is ready to receive data available to be sent on 
the output lines of a board’s digital I/O interface. They could also provide digital control, in 
particular, to switch AC or DC power relays or alarm relays, or provide the PC tremendous 
power for a variety of industrial control applications. 

Where digital I/O lines are used to drive panel LED displays or switch AC and DC power 
through relays, a high data transfer rate is not required. What is more important, however, is 
that the number of output lines should match the number of processes that are controlled, and 
that the amount of drive current required to turn the devices on/off are less than the available 
drive current from the output lines of the digital I/O interface. 

���*� ��������
���

�
����
�!����	��!����

5.10.1 Switch sensing 
In many applications, and particularly in industrial monitoring and control, switches form a 
primary interface for control actions that must be initiated by an operator. Operator controlled 
panel switches can be used to indicate that an action should be performed by the system. 
Alternatively, where switches have multiple contacts, one contact can actually perform the 
action required (i.e. turning on a pump), while another contact can be used to indicate that the 
action was actually initiated. The monitoring of abnormal system conditions can also be made 
easier by using limit switches to indicate that an alarm condition has been reached. In each of 
these cases, and in many other applications, the condition of the switch contact must be 
determined, requiring that the switches be interfaced and sensed by DAQ hardware. 

Since switches are passive devices with no power source, they must be made to emit TTL 
signal levels for direct connection to a TTL compatible digital I/O interface. The open/closed 
position of the switch is then deduced by the TTL logic level read at the digital input. This 
can be carried out quite easily, as demonstrated in the two switch-sensing connections shown 
in Figure 5.30. 

In the first switch-sensing connection, a pull-up resistor connected to one side of the switch 
is pulled up to the supply voltage level, which is normally available from the DAC board. 
The open position of the switch contact is deduced by the high logic level read at the digital 
input. When the switch contact is in the closed position the digital input is connected to 
digital ground. This configuration has higher noise immunity and has the added advantage 
that one terminal is connected straight to ground and can be grounded at a convenient point 
near the location of the switch. 

In the second switch-sensing configuration, a pull-down resistor is used to present a low 
logic level (digital ground) at the digital input, when the switch contact is open. When the 
switch contact is in the closed position, the digital input is connected directly to the 5 V 
supply voltage. The value of the pull-up or pull-down resistor is determined by the supply 
voltage and the digital input current sink capability. 



������������������
�����������
���� 
 

 

Figure 5.30 
Switch position sensing circuits 

Where it is likely that the signal source will be a button, switch or contact that bounces or 
glitches, or the signal may be a voltage higher than TTL levels, additional de-bounce and/or 
voltage divider circuitry is required. 

5.10.2 AC/DC voltage sensing 
In industrial monitoring and control, the throwing of a switch is used to begin or end an 
action, such as switching power to a motor or other machinery. In critical processes, the 
action of turning the switch is not necessarily enough to confirm that the motor has received 
power. This would require the sensing of the AC/DC voltages present at the motor inputs. As 
the AC/DC voltages involved could be quite high, any sensing circuitry directly connected to 
the digital I/O interface would need to provide high isolation, in addition to compatibility 
with the TTL digital I/O interface. A very simple AC/DC voltage sensing circuit that 
performs these tasks is shown in Figure 5.31. 
 

Circuitry sharing
PC ground

Isolated input
not polarized

470 Ohm

RX

47K

+5V

10K

Filter switch
0.1µF 

 

Figure 5.31 
AC/DC voltage sensing circuit 

There are several advantages of this low cost circuit. It is polarity insensitive and can be 
driven from 12 or 24 volt AC control transformers, the input voltage range can be extended 



��
������������	����
����
������������
���������������������������
���
�

by increasing the resistance of Rx and the use of the opto-isolator, guarantees high isolation, 
typically 500 V. 

Detection of AC voltages requires the use of a filter to smooth out the AC pulses from the 
opto-isolator and provide a continuous signal level to the digital inputs. This slows down the 
response to AC voltages (typically 1 ms), however, if the capacitor is switchable, it can be de-
selected, thus allowing faster response times (typically 20 µs), for DC input voltages. 

5.10.3 Driving an LED indicator 
Where it is necessary to provide a visual indication of an action being performed or to inform 
an operator of the status of a system or process, and a low level indicator is acceptable, light 
emitting diodes (LEDs) provide an easily implemented solution. As the standard TTL outputs 
from devices such as the 8255 PPI chip may not have sufficient drive to operate an LED, 
special driver circuitry is required, as shown in Figure 5.32. 
 

 

Figure 5.32 
Driving an LED 

5.10.4 Driving relays 
Using a plug-in board for digital control, in particular to operate relays that control AC or DC 
power or alarms, gives the PC tremendous power for a variety of control applications. Where 
digital I/O interfaces are required to operate relays, special circuitry is usually required 
because the relays typically cannot be driven directly from TTL signal levels. In addition, the 
drive current required to operate either electromechanical or solid-state relays is much greater 
than that provided by normal TTL circuits, such as the 8255 PPI chip. 

To accommodate any special signal level and current drive requirements of relays several 
options are available: 

• Specialized rack mounted relay boards that interface directly, via ribbon cable, to 
the output connectors of common digital I/O boards. The circuitry necessary for 
the higher current drive, required to operate the relays, is provided on the relay 
boards. Individual relay modules may be fitted to the boards to meet the contact 
configuration and rating required for a specific application. 



������������������
�����������
���� 
 

• Specialized plug-in digital I/O boards with higher current drive capability, 
designed especially for interfacing directly to relay modules. 

• Specialized plug-in digital I/O boards, that contain both the drive circuitry and 
relays on a single board. 

• External drive circuitry is provided by the user for each relay requiring higher 
drive current than that provided by the digital outputs of the digital I/O board 
being used. 

 
Whether included on specialized digital I/O boards, or provided by the user, circuitry is 

required to interface to electromechanical and solid-state relays. This is discussed in the 
following sections. 

Electromechanical relays 
Electromechanical relays, by nature of their construction, provide a degree of isolation from 
the voltages switched through their contacts. Where a failure occurs, the contacts can usually 
withstand an AC voltage of ten thousand volts for a short time. 

Coils of electromechanical relays provide an inductive load to drive circuitry. When the 
coil current is removed, the back EMF generated by the energy in the coil can cause damage 
to driving circuitry. Extra protection is required, usually in the form of a freewheel diode, 
across the relay control terminals, whereby the back EMF generated is dissipated through the 
diode’s current path. 

Electromechanical relays are also prone to contact arcing while switching inductive loads. 
Continued contact arcing causes contact degradation, high contact impedance, and eventual 
failure. In addition, contact arcing causes electromagnetic radiation, which may cause 
interference in digital circuitry. (To prevent degradation of contacts from the back EMF 
induced when switching inductive loads, a freewheel diode (and possibly a resistor in series 
to dissipate energy) should be placed across the contacts.) 

The drive current required to operate this type of relay depends on the rated coil voltage 
and coil resistance. As an example, a relay with a rated coil voltage of 5 V and coil resistance 
of 100 Ω would require 50 mA drive current. 

Clearly, the TTL compatible outputs of the 8255 chip could not provide this. Buffering with 
a high drive current chip is required. The ULN2003 Darlington Transistor Array chip serves 
two purposes, providing up to 500 mA of open collector drive current, as well as internally 
providing the freewheel diode required to dissipate the back EMP created when de-energizing 
the coil. The circuit configuration for driving this type of relay is shown below in Figure 5.33. 

 

 

Figure 5.33 
Driving electromechanical relays and preventing back-EMF damage 



���������������	����
����
������������
���������������������������
���
�

One advantage of this type of relay is that multiple pole relays are available which allow 
the switching of several contacts at the same time. 

Solid state relays 
Solid state relays (SSRs) are fabricated from power semiconductor devices. Their opto-
isolated inputs provide a degree of isolation (up to 4000 V AC) from high voltages appearing 
at their output. 

Solid state relays able to switch loads up to 3.5 A at rated voltages of 0–200 DC and 0–220 
V AC are capable of starting small motors, switching larger capacity motor starter relays, 
electric appliances, sprinkler valves, alarms and enunciator beams. 

These relays require greater than TTL levels of current to switch on. As a result, a simple 
8255 circuit does not have the power to turn on a solid state relay. An output buffer, a chip 
capable of sinking at least 16 mA of drive current, is required between the 8255 digital output 
lines and the solid state relay. The ULN2003 Darlington Transistor Array chip is more than 
capable of driving these types of relay. Figure 5.34 below shows the configuration for driving 
an SSR. 

 

Figure 3.34 
Driving solid state relays 

There are several advantages of solid state relays over reed and electromechanical relays: 
• Solid state relays do not have the problems of contact arcing and there is no back 

EMF to drive circuits when switched off. 
• Two solid state relays can be connected in parallel with each other and handle 

twice the current of a single relay’s rating. Built-in circuitry allows the units to 
share the current with no additional wiring. 

• Switching of high current SSRs is performed at the AC voltage zero crossover 
point, thus preventing surge currents and electromagnetic interference. 

����� +	�������
 �����)��	��
��

Counter/timer circuitry is useful for many applications, including digital event counting, 
digital pulse timing, one shot and continuous clocked outputs and generating waveforms with 
complex duty cycles. 

All of these applications can be implemented using a simple counter, which comprises a 
source input and gate input, a single output and an internal n-bit count register, as shown in 
Figure 5.35. 

 



������������������
�����������
���� 
 

 

Figure 5.35 
Simplified model of a counter 

A counter is a digital device that responds to and outputs TTL compatible signals, counting 
input signal transitions at its source input by incrementing its internal count register every 
time a transition occurs.  The source input therefore provides the time-base for the operation 
of the counter. The counter can be configured to count either negative going (high-to-low) 
transitions, or positive going (low-to-high) transitions, of signals occurring at the source 
input. The internal count register can be read by software at any time. 

The gate input can be used to enable/disable the function of the counter, by enabling or 
disabling counting dependent on the current signal level at the gate input.  In this mode, the 
active level of the gate input can be configured to enable counting when the gate input is at a 
high level and disable counting when it is at a low level, or vice-versa. The counter may also 
be configured to begin counting input transitions only after a transition of the signal at the 
gate input, that is, the gate acts as a count trigger. In this mode, the active edge of the gate 
input signal can be configured to allow counting only after a rising-edge (low-to-high) tran-
sition of the gate input, or alternatively, a falling-edge (high-to-low) transition of the gate 
input. In all modes, counting begins at the next active clock edge after the active gate signal. 
When the counter is used with no gating, software initiates the counting sequence. 

The output signal can be configured, depending on the mode of operation of the counter, to 
either toggle states or pulse, when the count register reaches its terminal count (TC).  If the 
signal output from another counter is used as the gate input, thereby enabling and disabling 
the count as required, complex waveforms with specified duty cycles and frequency could be 
generated. This is dependent on the mode of operation of the counter, since in some modes 
the gate input has no effect. 

Figure 5.36 shows the general operation of a counter configured for high-level gating and 
positive-edge triggered gating. The output signal is configured for positive polarity and is 
shown for both pulse-output and toggle mode on reaching terminal count (TC). For 
simplicity, the counter is operating in count-up mode and the count is set to five (5). 

 



���������������	����
����
������������
���������������������������
���
�

 

Figure 5.36 
Waveforms showing general operation of a counter 

Two commonly used counter/timer chips are available which provide counters with the 
signal functions described above.  The 8254 counter/timer chip contains three independently 
programmable 16-bit counters. It is regularly used on plug-in A/D boards as a pacer clock 
and pulse trigger for accurate timing of A/D sampling rates and D/A conversion rates. It is 
often included on multi-purpose DAQ boards as an uncommitted counter/timer to perform 
any necessary counting or timing functions required of an application. A more frequently 
used counter/timer chip for dedicated timer/counter I/O boards is the AM9513 chip, a 
powerful and flexible device, consisting of five independent 16-bit counters. A typical coun-
ter/timer I/O board employing the AM9513 chip is shown in Figure 5.37. 

 

 

Figure 5.37 
Typical counter/timer I/O board 



������������������
�����������
���� 
 

As details of the AM9513 operation are quite complex they will not be detailed here, 
however, the most important specifications of a counter/timer chip are its resolution, which is 
simply the bit width of the internal count registers, and clock frequency. A counter/timer chip 
with 16-bit resolution means that each of its counters can count up to 65,535. A higher 
resolution simply means that each of the counters can count higher. Greater count resolution 
can be achieved by connecting the output of one counter to the source input of another 
counter. When two or more counters are cascaded together, extremely large counts can be 
performed. For example, two 16-bit counters, when cascaded to make a 32-bit counter, can 
count to over four billion. 

The clock input to a counter is a physical connection to a high frequency stable clock 
source, which is usually internally-divided to more suitable clocking frequencies. The fre-
quency of the clock source becomes important since new counts are loaded and the internal 
counter is decremented on a transition of the clock pulse, usually on the falling edge of the 
clock. Consider a signal applied to the source input that has a higher frequency than the clock 
source. The input signal may perform several transitions before the next clocking edge allows 
the internal counter to be decremented, leading to inaccurate measurement of the source input 
signal. Therefore, the higher the clock frequency, the faster the internal count register can be 
decremented and the higher the frequency signals on the source input, which can be detected 
and accurately measured. In addition, the higher the frequency of the clock source, the higher 
the frequency of pulses, square waves and complex waveforms, which can be generated on 
the output. 

Counter/timers can be configured to operate in many different modes of operation, the 
number of modes, and the functions performed in each mode dependent on the manufacturer 
of the counter/timer chip.  Several of the most common functions that can be performed by 
counter/timers are demonstrated below. 

Generating waveforms 
Generating waveforms of variable duty cycles is straightforward. Consider a counter on the 
8254 counter/timer chip, configured for mode 1 operation, in which the count is triggered by 
the active edge of the signal on the source input. The next clock pulse after this count-trigger, 
the internal counter is loaded with the initial count (N), the output goes low, and the count 
begins. The output will remain low for N clock pulses before returning high and remaining 
high until the next clock pulse after the next active edge of the source input signal.   

By using this method, output waveforms of specified duty cycle and frequency can be 
generated. The frequency of the waveform is exactly the same as the frequency of the signal 
applied at the source input. The duty cycle is determined by dividing the period T1 for which 
the output signal remains high, divided by the period of the output signal T3= T1 + T2. 

When a waveform is generated in this way there will be an uncertainty in the period of the 
output waveform compared to the period of the signal on the source input, of up to one clock 
period.  This error depends on when the count trigger occurs in relation to the active edge of 
the clock signal. 

Measuring pulse width 
Counters can be used to measure the width of a pulse by applying the unknown pulse signal 
to the gate input of the counter and counting the number of cycles of a known frequency 
clock signal applied to the source input. The known clock signal can be derived from the 
clock input of the counter/timer chip, an external clock source, or from the output of another 
counter configured to produce a periodic waveform of the required frequency. 



��	������������	����
����
������������
���������������������������
���
�

When a counter is configured to enable counting on the active high level of the gate input, 
the internal counter starts counting the source input transitions at the next active transition, 
after the gate input pulse goes high and stops counting at the end of the pulse. The duration of 
the gate input pulse (Tpw) is found by reading the count register contents, determining the 
number of known clock transitions that occurred (N), and multiplying this by the time 
between each active transition of the clock (TS). In this case, it does not matter whether the 
count occurs on the positive or negative going edge of the source input. What is more 
important is the frequency of the known clock signal applied to the source input. As shown in 
Figure 5.38, an error can occur in the counting of the clock transitions, depending on when 
the pulse begins and ends in relation to the active edge of the clock input. This error can be 
almost two full clock cycles. Clearly, the higher the frequency of the clock signal, the smaller 
the counting error will be, and the higher the resolution of the pulse measurement. Care must 
also be taken not to choose too high a frequency clocking source input as the counter may 
reach its terminal count before the end of the pulse. 

 

 

Figure 5.38 
Measuring an unknown pulse width 

Consider a 500 kHz clock signal, with a clock period of 2 µs, applied to the source input.  
As a 16-bit counter can count up to 216–1 = 65,535 transitions of the clock input, the 
maximum measurable pulse width will be 65,535 * 2 µs = 131 ms. Decreasing the frequency 
of the clock input source increases the pulse width that can be measured. 

Selection of the frequency of the clocking source input is therefore a compromise between 
the resolution and accuracy required of the measurement and the pulse width that must be 
measured. 

Measuring an unknown frequency 
Counters can also be used to measure the frequency of a periodic square wave, irrespective of 
its duty cycle. This is accomplished by applying the unknown signal to the source input of the 
counter and counting the number of cycles of the signal during a fixed duration pulse applied 
to the gate input. The fixed duration gate input signal can come from an external source or 
from the output of another counter, configured to produce a pulse of the required duration. 

As was the case for pulse width measurement, the counter is configured to enable counting 
on the active high level of the gate input.  The internal counter starts counting the source 
input transitions at the next active transition after the gate input pulse goes high and stops 
counting at the end of the pulse.  The frequency of the signal at the source input, (fS), is found 
by determining the number of signal transitions (N), which occurred and dividing this by the 
period of the fixed duration gate input pulse, Tpw. fS = N / Tpw. This is shown in Figure 5.39. 

 



������������������
�����������
���
 
 

 

 

Figure 5.39 
Measuring an unknown frequency 

The lower the frequency of the signal that must be measured, the greater should be the fixed 
duration pulse width to achieve the same resolution and accuracy.  If however, the duration of 
the fixed pulse, (Tpw), is too long compared to the clock period, (TS), of the unknown 
frequency signal being measured, the counter may reach its terminal count before the end of 
the pulse. Therefore, the selection of the duration of the fixed pulse at the gate input is a 
compromise between the resolution and accuracy required and the frequency of the input 
signal being measured. 



6 

���������	��
���
��
�	�����

The standardization of the RS-232 serial port as part of the IBM PC and its compatibles has 
led to this communications interface being used for many stand-alone loggers and other 
instruments that have interfaced to the PC. With the advent of smart instrumentation such as 
digital transmitters and their use in a distributed data acquisition and control system, the re-
quirements of interfacing multiple devices on a multi-drop network has led to the extensive 
use of the RS-485 communications interface. 

This chapter reviews the fundamental definitions and basic principles of digital serial data 
communications. It details two of the most popular and common interface standards used in 
data acquisition and control systems (RS-232 and RS-485). In addition, the most common 
industrial protocols are examined, including methods for detecting errors in communication, 
an important consideration in noisy industrial environments. A section on troubleshooting 
and testing serial data communications circuits has been included for completeness. 

In the past, Ethernet has been usually thought of as an office networking system.  Now 
many manufacturers are using Ethernet and industrial fieldbuses as communication systems 
to interconnect data acquisition devices. This can take the form, among others, of connecting 
computers that are using plug-in data acquisition cards or data loggers that are networked 
together. Fieldbuses such as Profibus and Foundation Fieldbus are being used to interconnect 
devices that are doing data acquisition. There are currently several hybrid analog and digital 
standards available for communication between field devices and between field devices and a 
master system. Only a fully-compatible digital communication standard will provide the 
maximum benefits to end users and one such standard, currently being proposed, is the 
Foundation FieldBus 

���� ����	�
��	��
	���
�������	�������

All data communications systems have the following components: 
• The source of the data (e.g. a computer). Also required is circuitry that converts 

the signal into one that is compatible with the communications link, called a 
transmitter or line driver 



���������	��
���
��
�	����  ��� 

• The communications link (twisted-pair cable, coaxial cable, radio, telephone 
network etc), which transfers the message to the receiver at the other end 

• The receiver of the data where the signal is converted back into a form that can be 
used by the local electronics circuitry 

 
Both the receiver and the transmitter must agree on a number of different factors to allow 

successful communications between them, the most important being: 
• The type of electrical signals used to transmit the data 
• The type of codes used for each symbol being transmitted 
• The meaning of the characters 
• How the flow of data is controlled 
• How errors are detected and corrected 
 

The hardware rules that apply to the physical interface and its connections are known as 
interface standards, while the software rules which apply to the format and control of data 
flow and the detection and correction of errors are generally referred to as the protocol. 

All data communication is based on the same binary system used in computers. Each basic 
unit of information is called a BIT (BInary digIT), and it can be one of two values: ‘0’ or ‘1’. 
These are termed logic 0 and logic 1. Inside a computer, a bit is usually represented by a 
voltage; typically, 5 V is logic 1, and 0 V is logic 0. In data communications, a logic 1 is also 
referred to as a mark and a logic 0 as a space. 

In a data communications link, the 1s and 0s may be indicated by a +/– voltage. Other 
methods can involve audio tones, with one frequency for logic 1 and a different frequency for 
logic 0. Some advanced techniques allow several bits to be encoded in a single voltage 
change: this is how you can use a 14.4 kbps modem on a telephone line with a nominal band-
width of only around 3 kHz. 

A string of bits is a binary number. It can be interpreted simply as a numerical value (in 
binary, hexadecimal or some other numbering system) or it may be translated into a character 
according to an agreed code. For example, in the ASCII system the binary value 1000100 
represents ‘D’. 

6.1.1 Transmission modes – simplex and duplex 
In any communication system connecting two devices, data can be sent in one direction only, 
or in both directions. A simplex system is one that is designed for sending messages in one 
direction only. This is shown in Figure 6.1. 
 
 

 

Figure 6.1 
Simplex communications 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

A duplex system is designed for sending messages in both directions. Two types of duplex 
systems exist: 

• Half duplex occurs when data can flow in both directions but only in one 
direction at a time as shown in Figure 6.2. First one end transmits and the other 
end receives. After what is called the line turnaround time, the roles are reversed. 

 

 

Figure 6.2 
Half duplex communications 

• In a full duplex system, shown in Figure 6.3, the data can flow in both directions 
at the same time. 

 

 

Figure 6.3 
Full duplex communications 

6.1.2 Coding of messages 
To transfer a message across a communications interface, both the sender and receiver must, 
among other things, agree on the meaning of the binary digital patterns transferred, or the 
code. Encoding is the process of converting the message data into a standard binary code for 
transfer over the data communications link. The number of bits in a code determines the total 
number of unique characters that are possible. 

The most common character set used for digital data communications in the Western world 
is the American Standard Code for Information Interchange, or ASCII code (see Appendix 
E).   

This code assigns a binary field of 7-bits to represent each character, giving 128 (27) unique 
characters made up of: 

• Upper and lower case letters, and numerals 1 to 9 
• Various punctuation marks and symbols 
• A set of control codes (the first 32 characters) that are used by the communi-

cations link itself and are not printable 
 

On a computer keyboard, ASCII control codes are generated by pressing the Control key 
[Ctrl] and another key. For example, [Ctrl]-[A] generates the ASCII code SOH. 

A communications link set up for 7-bit data strings can only handle hexadecimal values 
from 00 to 7F. For full hexadecimal data transfer, an 8-bit link is needed, with each packet of 
data consisting of a byte (two hexadecimal digits) in the range 00 to FF. For this reason, an  
8-bit link is often referred to as transparent because it can transmit any value. In this case, a 



���������	��
���
��
�	����  ��� 

character can still be interpreted as an ASCII value if required (in which case the eighth bit –
the most significant bit is ignored). 

It is worth mentioning that the full hexadecimal range can in fact be transmitted over a 7-bit 
link by representing each hexadecimal digit as its ASCII equivalent. Thus the hexadecimal 
number 8E would be represented as the two ASCII (hexadecimal) values 38 45 (‘8’ ‘E’). The 
disadvantage of this technique is that the amount of data to be transferred is almost doubled, 
and extra processing is needed at each end. 

ASCII (American Standard Code for Information Interchange) is the most commonly used 
code for encoding characters for data communications. It is a 7-bit code with only 27 = 128 
possible combinations of the seven binary digits (bits).   

Each of these 128 codes is assigned to a specific control code or character, as specified by 
the these standards: 

• ANSI – X3.4 
• ISO – 646 
• CCITT alphabet #5 
 

An ASCII table records the bit value of every character defined by the code. There are 
many different forms of the table, but they all contain the same basic information. The values 
in the table may be expressed in decimal (DEC), ranging from 0–127, or in binary (BIN), 
ranging from 0000000 to 1111111, or in hexadecimal (HEX) numbers, ranging from 00 to 
7F. (See Table 6.2 for examples of binary to hexadecimal conversions.) 

A condensed form of the table showing characters and control codes is presented in Table 
6.1. The control codes and their meanings are listed in Table 6.3. 

Table 6.1 shows the code for each character in hexadecimal and binary values. It takes the 
form of a matrix in which the MSB (most significant bits) are along the top and the LSB 
(least significant bits) are down the left-hand side. 

 
� ����

� ���� �� �� �� �� �� �� �� ��

���� ���� ���� ���� ���� ���� ���� ���� ���� ����

�� �����  �!"#�  $"�#� �%�
�� �� &� '� (� %�

�� �����  �)�#�  $*�#� +� �� ,� -� �� .�

�� �����  �/�#�  $*�#� 0� �� �� 1� 2� ��

�� �����  �/�#�  $*�#� 3� �� *� �� 
� ��

�� �����  �)/#�  $*�#� 4� �� $� /� �� 	�

�� �����  ��-#�  �,5#� 6� �� �� !� �� 
�

�� �����  ,*5#�  �7�#� 8� �� 9� :� ;� <�

�� �����  ��"#�  �/�#� (� �� =� >� ?� @�

�� �����  ��#�  *,�#�  � �� �� �� A� B�

�� �����  �/#�  �C#� #� �� �� 7� �� D�

,� �����  "9#�  �!�#� E� F� G� H� I� J�

�� �����  :/#�  ��*#� K� L� 5� M� N� O�

*� �����  99#�  9�#� P� Q� "� R� �� S�

$� �����  *1#�  =�#� T� U� C� V� �� W�

�� �����  �)#�  1�#� X� Y� �� Z� �� [�

�
�
�
�
�

����

9� �����  ��#�  !�#� \� ]� )� ^� �� $�"�

Table 6.1 
ASCII table 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

Some examples of the HEX and BIN values are given below: 
 

��
�
�
��� ���� ����

A 41 100 0001 
M 4D 100 1101 
m 6D 110 1101 
@ 40 100 0000 
? 3F 011 1111 

Table 6.2 
Some examples of binary and hexadecimal values 

The meanings of standard abbreviations used in the table are as follows: 
 
,*5� ,
N��@���?��

��"� �����

��� ��
N�%�
��

*,�� *��
���

*1� *�����?����	
���

$*�� $���
	�
��	������

$*�� $���
	�
��	������

$*�� $���
	�
��	������

$*�� $���
	�
��	������

$"�� $�	�����N���
�%��

�C� �����;�����
��

��-� ��.
��D�

�)/� �����;�	������������

��*� ��
�%��

�/�� �����;�	������������2��
N�

�/�� �����;�	�B	�

99� 9����;����

9�� 9������%���	���

=�� =��
%���%���	���

�/� ����J��	���	�2�

"9� "����;����

�,5� ��?�	�<���
N��@���?��

�!"� �
���

1�� 1�
������%���	���

��� �A�;	����

�)� �A�;	��
	�

�)�� �	��	��;�A�����?�

�/�� �	��	��;�	�B	�

�!�� �
2�	�	
	��

�7�� �D�
A����
�������

!�� !��	���%���	���

:/� :��	�
���	�2�

Table 6.3 
ASCII control codes and their meanings 



���������	��
���
��
�	����  ��� 

6.1.3 Format of data communications messages 
It is not reasonable to expect that a device can send a string of characters across a com-
munications link and that the receiver at the other end will know what to do with the data. 
Any message must be presented according to some pre-arranged rules. Consequently, data is 
usually arranged in a particular format, with additional information added so that the message 
can be effectively transmitted and understood at the receiving end. Consider a simple asyn-
chronous system such as RS-232, for which it is common practice to send one character at a 
time. The format of a typical character frame is indicated in Figure 6.4. 
 

 

Figure 6.4 
Format of a typical serial asynchronous data message 

Initially the data communications link is in the idle state: the line is in the mark state, held 
to a constant negative voltage. 

The transmitter then sends a start bit to indicate that it is transmitting a character. The start 
bit is in the opposite voltage state to the idle voltage and allows the receiver to synchronize to 
the character that follows the start bit. 

The receiver reads in the individual bits of the character as they arrive.  At the end of the 
data bits, a parity bit may be included to allow the receiver to detect any possible errors in the 
character frame. After the parity bit, optionally 1, 1½ or 2 stop bits follow (1½ stop bits is a 
logic 1 held for 50% longer than 1 stop bit). The stop bit effectively puts the com-munication 
line back into an idle state. After the last stop bit is transmitted down the line, a start bit can 
be transmitted for the next character. 

The parity bit included at the end of the character is effectively a fingerprint of the cha-
racter to enable the receiver to identify whether any errors have occurred in the transmission. 

Even parity means that the total number of logic 1 bits in the data together with the 
associated parity bit must be an even number. The UART (see p. 210) works out if there is an 
even or odd number of 1 bits and sets the parity bit to 0 or 1 to make the total count, 
including the parity bit, even. Odd parity is done in a similar way, except that the UART sets 
the parity bit to be 1 or 0 to ensure that the total number of bits in the message, again, inclu-
ding the parity bit, is an odd number. 

Two more options are available for the parity bit.  Mark parity always sets the parity bit to 
1, whilst space parity sets the parity bit to a 0. While mark and space parity obviously do not 
allow the receiver to detect any errors in the character frame, they are sometimes used when 
there are timing problems. 

Statistically, in selecting even or odd parity, there is a 60% chance of the receiver detecting 
a parity error. The parity scheme works based on an odd number of bits being in error in the 
character frame. An even number of bits in error will not be detected by the parity detection 
scheme. Thus due to the availability of more sophisticated error-checking schemes today, 
(such as block check calculation and cyclic redundancy check), the parity bit is sometimes set 
to no parity (that is, there is no parity bit at all in the character frame). 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

In summary, the optional settings for asynchronous transmission of characters are: 
•  Start bits 1 
•  Data bits 5, 6, 7, 8 
•  Parity bits even, odd, mark, space or none 
•  Stop bits 1, l½ or 2 
 

As there cannot be half a bit, 1½-stop bits means that the mark length is 50% longer than 
for one stop bit. 

6.1.4 Data transmission speed 
The maximum rate at which data can be transferred from the source to the receiver on a com-
munications interface depends on a number of factors: 

• Type and complexity of the circuitry at each end (interface) 
• Communication link (twisted-pair, coaxial cable, radio etc) 
• Distance between the sender and receiver 
• Amount of data being transferred 
• The overhead associated with the data transfer 
• The acceptable rate of error 
 

The lower the data rate, the less complex are the requirements of the communication link, 
the source and receiver circuitry and the lower the errors due to timing and noise problems. 

Data transfer rates are usually measured in bits per second or bps. This is an indication of 
the useful data that has been transmitted to the receiver. For example, in Figure 6.4 the useful 
data is only seven bits, whilst the total number of bits transmitted was ten. The additional 
three bits are viewed as overhead bits for the data communication. 

The baud rate (named in recognition of Maurice Emile Baudot) can be considered the phy-
sical rate, or signaling speed at which data bits can be transmitted and correctly received on 
the communications interface. Referring to Figure 6.4, if each bit occupied a time of 1 milli-
second (ms), the total baud rate would be 1 / 1 ms = 1000 baud. This is the signaling speed. 
The data transfer rate, on the other hand, can be calculated as: 

7 data bits / 10 ms = 700 bits per second (bps) 
The actual data transfer rate is therefore 30% less than the baud rate for this example of a 

total of 10 bits in the frame. Baud rates are usually quoted in standard values such as 50, 110, 
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115200 baud. It is common 
practice in industry to use the terms baud rate and data transfer rate interchangeably, unless it 
is specifically noted that they are not equal. 

When using modems and sophisticated encoding techniques, a single signal change on the 
line can indicate several encoded bits. This means that the data rate (in bps) is far greater than 
the baud rate (the reverse of the situation quoted in the previous example). 

����  �!�"�!���	
���
����

	�
���

The Electronic Industries Association (EIA) RS-232 interface standard is probably the most 
widely known of all serial data interface standards. It was developed for a single purpose 
clearly stated in its title, and defines ‘Interface between Data Terminal Equipment (DTE) and 
Data Communications Equipment (DCE) employing serial binary data interchange’. It was 
issued in the USA in 1969 by the engineering department of the EIA. Bell Laboratories and 
leading manufacturers of communications equipment also cooperated to clearly define the 



���������	��
���
��
�	����  ��� 

interface requirements when connecting data terminals to the Bell telephone system. Almost 
immediately, shortcomings resulted in minor revisions to the standard, becoming EIA-232-C 
still widely used today. The current revision is EIA/TIA-232-E (1991), which brings it into 
line with the international standards CCITT V.24, CCITT V.28, and ISO-2110. Some users 
contest the statement that EIA-232 is a ‘standard’, because its interpretation has been 
responsible for many problems in interfacing equipment from different manufacturers. It 
should be emphasized that EIA-232 standard defines the electrical and mechanical details of 
the interface and does not define a protocol. 

The EIA-232 standard consists of three major components, which define: 
• Electrical signal characteristics 

Electrical signals such as the voltage levels and grounding characteristics of the 
interchange signals and associated circuitry. 

• Interface mechanical characteristics 
The mechanical characteristics of the interface between the DTE and DCE. This 
section dictates that the interface must consist of a plug and socket, and that the 
socket will normally be on the DCE. The familiar DB-25 connector is specified 
together with a smaller 26-pin alternative connector. 

• Functional description of the interchange circuits 
This section defines the function of the data, timing and control signals used at the 
interface between DTE and DCE. Very few of the definitions in this section are 
relevant to applications for data communications for data acquisition and control. 

6.2.1 Electrical signal characteristics 
The RS-232 standard is designed for the connection of two devices: data terminal equipment 
(DTE), such as a computer or printer, and data communications equipment (DCE), such as a 
modem. DCEs are now also called data circuit-terminating equipment in the RS-232-D/E 
standard. This definition was required since the RS-232 standard is often used to interface 
items of equipment that are not communication devices. 

A typical connection between a computer (DTE), which transmits data on pin 2 and 
receives data on pin 3 of a 25-way DB connector, to a stand-alone controller (DCE) that 
receives data on pin 2 and transmits data on pin 3 is shown in Figure 6.5. 
 

 

Figure 6.5 
Connections between a computer (DTE) and a stand-alone controller (DCE) 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

At the RS-232 receiver the following signal voltage levels are defined: 
• +3 V to +25 V for transmission of logic 0 
• –3 V to –25 V for transmission of logic 1 
• +3 V to –3 V for an undefined logic level 
 

To meet these voltage requirements at the receiver and to overcome any voltage drops that 
occur along the communications lines, the RS-232 transmitter must produce slightly higher 
voltages.   

These are in the range: 
• +5 V to +25 V for transmission of logic 0 
• –5 V to –25 V for transmission of logic 1 
• +5 V to –5 V for an undefined logic level 
 

In practice, many EIA-232 transmitters operate very close to their margin of safety, e.g. at 
+7 and –7 volts. This can be acceptable for short cable runs, where it is hoped that there will 
be no voltage problems. Unfortunately, increased error rates can be expected at the receiver 
because of induced external interference voltages. 

The voltage levels associated with the internal electronics of DTE and DCE devices are 
commonly –5 V to +5 V and are therefore not directly compatible with the signal levels 
associated with the communications interface.  Consequently, at the transmitting end, a Line 
Driver is necessary in each data and control line to amplify this voltage to the higher level 
required on the EIA-232 interface. Modem power supplies, such as those used in PCs, usually 
have a standard +12 V to –12 V voltage output that can then be used for the line driver 
output. This falls within the voltage range specified by the EIA-232 standard and is the 
voltage level most commonly used these days. 

At the receiving end, a Line Receiver is necessary for each data and control line to reduce 
the voltage level to the –5 V to +5 V level required by the internal electronics. 

 

 

Figure 6.6 
EIA-232 transmitters and receivers 

The EIA-232 standard defines twenty-five (25) electrical connections, which are each 
described in more detail in Section 6.2.3.   



���������	��
���
��
�	����  ��� 

The electrical connections are divided into the four groups shown below: 
• Data lines 
• Control lines 
• Timing lines 
• Special secondary functions 
 

The data lines are used for the transfer of data. Pins 2 and 3 are used for this purpose. Data 
flow is designated from the perspective of the DTE interface. Hence, the ‘transmit line’, on 
which the DTE transmits (and DCE receives), is associated with pin 2 at the DTE end and pin 
2 at the DCE end. The ‘receive line’, on which the DTE receives (and DCE transmits), is 
associated with pin 3 at the DTE end and pin 3 at the DCE end. Pin 7 is the common return 
line for the transmit and receive data lines. 

Control lines are used for interactive device control, commonly known as ‘hardware 
handshaking’, and regulate the way in which data flows across the interface.   

The four most commonly used control lines are as follows: 
• RTS – request to send 
• CTS – clear to send 
• DSR – data set ready (or DCE ready in EIA-232-D/E) 
• DTR – data terminal ready (or DTE Ready in EIA-232-D/E) 
 

It is important to note that the handshake lines operate in the opposite voltage sense to the 
data lines. When a control line is active (logic 1), the voltage is in the range +3 to +25 volts 
and when deactivated (logic 0), the voltage is zero or negative. 

Hardware handshaking is usually the cause of most of the interfacing problems. 
Manufacturers sometimes omit certain of these control lines from their EIA-232 equipment or 
assign unconventional purposes to them. Consequently, many applications do not use 
hardware handshaking but instead use only the three data lines (transmit, receive and signal 
common ground) with some form of software handshaking. The control of data flow is then 
part of the application program. Most of the systems encountered in data communications for 
data acquisition, instrumentation and control, use some sort of software based protocol in 
preference to hardware handshaking. Simple examples of software handshaking protocols are 
the ETX/ACK, where the transmitter software is in control of the handshake, and 
XON/XOFF, where the receiver software controls the handshake. 

There is a relationship between the allowable speed of data transmission and the length of 
the cable connecting the two devices, on the EIA-232 interface. Briefly, as speed increases, 
the quality of the transition of the data signal from one voltage level to another (e.g. from      
–25 V to +25 V) becomes increasingly dependent on the capacitance and the inductance of 
the cable. The rate, at which voltage can ‘slew’ from the one logic level to the other, depends 
mainly on the cable capacitance, which increases with cable length. The length of the cable is 
thus limited by the number of data errors that are acceptable during transmission. The EIA-
232-D&E standard specifies the limit of total cable capacitance to be 2500 pF. With typical 
cable capacitances of 50 pF/ft, the maximum cable length would appear to be 50 ft, but in 
practice, longer cable lengths appear to be possible with lower data transmission rates. 

The common data transmission rates used with EIA-232 are 110, 300, 600, 1200, 2400, 
4800, 9600 and 19200 baud. Based on field tests, Table 6.4 shows a practical relationship 
between selected baud rates and the cable length supporting reliable transmission. Table 6.4 
indicates that much longer cable lengths are possible at lower baud rates. These values do not 
take into account the effects of noise, which can adversely affect the maximum cable length 
supported at a given baud rate. 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

�
#���

�� �
������	$
��%&'�
110 850 
300 800 
600 700 
1200 500 
2400 200 
4800 100 
9600 70 
19200 50 

Table 6.4 
Demonstrated maximum cable lengths with EIA-232 interface 

6.2.2 Interface mechanical characteristics 
Although not specified by RS-232C, the DB-25 connector (25 pin D-type) has become so 
closely associated with RS-232 that it is accepted as the de facto standard. On some RS-232 
compatible equipment, where not all the control lines are required for handshaking, the 
smaller DB-9 connector (9 pin D-type) is commonly used. 

The pins of the DB-9 connector are usually allocated as follows: 
• Pin 2 – receive data 
• Pin 3 – transmit data 
• Pin 7 – signal ground 
 

While this pin configuration is likely to be adhered to by manufacturers at the computers 
communications interface, it is possible (and often likely) that the data receive and transmit 
lines on remote stand-alone systems are on different pins of the DB-9 connector. It is there-
fore wise to consult the manufacturers’ data sheets. 

The common RS-232 pin assignments for both the DB-9 and DB-25 connectors are shown 
in Table 6.5, below (continued on the following page). 
 
(�	�

	���

��!)���		��
���

�����"����	�


���$	&�	
�
�

��!�*���		��
���

��+!�"����	�
���$	&�	
�

1 Received line signal Shield 
2 Received data Transmitted data 
3 Transmitted data Received data 
4 DTE ready Request to send 
5 Signal 

common/ground 
Clear to send 

6 DCE ready DCE ready 
7 Request to send Signal ground/common 
8 Clear to send Received line signal 
9 Ring indicator + Voltage (testing) 
10  – Voltage (testing) 
11  Unassigned 
12  ��
���
(���������?������	�
	��\��	��



���������	��
���
��
�	����  ��� 

��?����
13  Sec clear to send 
14  Sec transmitted data 
15  Transmitter signal DCE element 

timing 
16  Sec received data 
17  Receiver signal DCE element timing 
18  Local loopback 
19  Sec request to send 
20  DTE ready 
21  Remote loopback/signal quality 

detector 
22  Ring indicator 
23  Data signal rate 
24  Transmit signal DTE element timing 
25  Test mode 

Table 6.5 
Table of the common DB-9 and DB-25 pin assignments for EIA-232 

6.2.3 Functional description of interchange circuits 
The EIA circuit functions are defined, with reference to the DTE, as follows: 

• Pin 1: Protective ground (shield) 
A connection is seldom made between the protective ground pins at each end.  
Their purpose is to prevent hazardous voltages, by ensuring that the DTE and 
DCE chassis are at the same potential at both ends.  However, there is a danger 
that a path could be established for circulating earth currents, so, usually the cable 
shield is connected at one end only. 

• Pin 2: Transmitted data (TXD) 
This line carries serial data from pin 2 on the DTE to pin 2 on the DCE. The line 
is held at MARK (or a negative voltage) during periods of line idle 

• Pin 3: Received data (RXD) 
This line carries serial data from pin 3 on the DCE to pin 3 on the DTE. 

• Pin 4: Request to send (RTS) 
The RTS line is a request to send from the DTE to the DCE. This line is used in 
conjunction with the CTS line to do hardware control.  The DCE will not enable 
the CTS line until the DTE enables its RTS line. 

• Pin 5: Clear to send (CTS) 
When a half-duplex modem is receiving, the DTE keeps RTS inhibited.  When it 
becomes the DTE’s turn to transmit, it advises the modem by asserting the RTS 
pin. When the modem asserts the CTS, it informs the DTE that it is now safe to 
send data.   

• Pin 6: Data set ready (DSR) 
This is also called DCE ready. In the answer mode, the answer tone and the data 
set ready are asserted two seconds after the telephone goes off hook. 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

• Pin 7: Signal ground (common) 
This is the common return line for the data transmit and receive signals. The 
connection, pin 7 to pin 7 between the two ends, is always made. 

• Pin 8: Data carrier detect (DCD) 
This is also called the received line signal detector. Pin 8 is asserted by the 
modem when it receives a remote carrier and remains asserted for the duration of 
the link. 

• Pin 20: DTE ready (or data terminal ready) 
DTE Ready enables, but does not cause, the modem to switch onto the line.  In 
originate mode, DTE Ready must be asserted in order to auto dial.  In answer 
mode, DTE Ready must be asserted to auto answer. 

• Pin 22: Ring indicator 
This pin is asserted during a ring on the line. 

• Pin 23: Data signal rate selector (DSRS) 
When two data rates are possible, the higher is selected by asserting pin 23. 

6.2.4 The sequence of operation of the EIA-232 interface 
The following description of one particular operation of the EIA-232 interface is based upon 
a half duplex data interchange. It should be noted that full duplex communication is generally 
used today; however, a half duplex description is given as it encompasses that of full duplex 
operation. Figure 6.7 gives a graphical description of the operation with the initiating user 
terminal (or DTE) and its associated modem (or DCE) on the left of the diagram and the 
remote computer and its modem on the right.   

The following sequence of steps occur: 
• The initiating user manually dials the number of the remote computer. 
• The receiving modem asserts the ring indicator line (RI-pin 22) in a pulsed 

ON/OFF fashion as per the ringing tone. The remote computer already has its data 
terminal ready line (or DTR-pin 20) asserted to indicate that it is ready to receive 
calls. (Alternatively, the remote computer may assert the DTR line after a few 
rings.) The remote computer then sets its request to send line (RTS-pin 4) to ON. 

• The receiving modem then answers the phone and transmits a carrier signal to the 
initiating end. It also asserts the DCE ready (DSR-pin 6) after a few seconds. 

• The initiating modem then asserts the data carrier detect line (DCD-pin 8). The 
initiating terminal asserts its DTR (if it is not already high). The modem then 
responds by asserting its data set ready line (DSR-pin 6). The receiving modem 
then asserts its clear to send line (CTS-pin 5), which permits the transfer of data 
from the remote computer to the initiating side. 

• Data is then transferred from the receiving DTE on pin 2 (transmitted data) to the 
receiving modem. The receiving remote computer can then transmit a short 
message to indicate to the originating terminal that it can proceed with the data 
transfer. The originating modem transmits the data to the originating terminal on 
pin 3. 

• The receiving terminal then sets its request to send line (RTS-pin 4) to OFF. The 
receiving modem then sets its clear to send line (CTS-pin 5) to OFF as well. 

• The receiving modem then switches its carrier signal OFF. 
• The originating terminal detects that the data carrier detect signal has been 

switched OFF on the originating modem and then switches its RTS line to the ON 



���������	��
���
��
�	����  ��� 

state. The originating modem then indicates that transmission can proceed by 
setting its CTS line to ON. 

• Transmission of data then proceeds from the originating terminal to the remote 
computer. 

• When the interchange is complete, both carriers are switched OFF (and in many 
cases the DTR is set to OFF). This means that the CTS, RTS and DCE ready (or 
DSR) lines are set to OFF. 

 
Note that full duplex operation requires that transmission and reception occur simul-

taneously. In this case, there is no RTS/CTS interaction at either end. The RTS line and CTS 
line are left ON with a carrier to the remote computer. 

 
 

 

Figure 6.7 
Example operation of an EIA-232 data interchange 

Break detect 
To gain the attention of the receiver, a transmitter may hold the data line in a space condition 
(+ voltage) for a period longer than that required for a complete character. This is called a 
‘break’ and receivers can be equipped with a break detect to detect this condition. It is useful 
for interrupting the receiver even when it is in the middle of a stream of characters being sent. 
Obviously, the break detect time is a function of the baud rate. 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

6.2.5 Examples of RS-232 interfaces 
Although, the RS-232-C interface standard defines only a point-to-point connection on the 
communications link, there are circumstances when more than one device is required to be 
connected to the PC. An example of this would be the connection of multiple digital 
transmitters to a PC that has only one RS-232-C standard communications port. Whilst the 
RS-232 interface is not designed to be used in a multi-drop system, it is possible to connect 
the modules to the PC using a daisy-chain network. 

In a daisy-chain configuration, each transmit-signal line output is wired to the ‘receive 
input’ signal line of the next digital transmitter in the daisy chain.  This wiring sequence must 
be followed until the output of the last digital transmitter in the chain is wired to the receive 
input of the host. For the daisy-chain network to work correctly all digital transmitters must 
be set to the same baud rate, they must be uniquely addressable and must be able to echo any 
data received at the receive input to its transmit output. All characters transmitted by the host 
computer are received by each digital transmitter in the chain, and then passed on until the 
information is echoed back to the host. Commands sent from the host are examined by all 
digital transmitters. The device which is addressed, responds by transmitting its response on 
the daisy-chain network, rippling through any other modules before reaching its destination at 
the receive input of the host computer. 

The daisy-chain must be carefully implemented to avoid pitfalls inherent in its structure. As 
the daisy-chain is a series-connected structure, any break in the communications link or fail-
ure of any of the devices connected will make the network inoperable. 

Where the distance between the host computer and several remote devices is beyond the 
capacity of a normal RS-232 communications link, the network shown in Figure 6.7 can be 
implemented. The communications link at either end is still RS-232. 

6.2.6 Main features of the RS-232 interface standard 
The following are some of the main features of equipment that use the EIA-232 interface 
standard: 

• Communication is point-to-point 
• They are suitable for serial, binary, digital, data communication (data is sent bit 

by bit in sequence) 
• Most EIA-232-C communications data is in the ASCII code, although that is not 

part of the standard 
• Communication is asynchronous (fixed timing between data bits, but variable 

time between character frames) 
• Communication is full-duplex (both directions simultaneously) with a single wire 

for each direction and a common wire 
• Voltage signals are: 

1. Logic 1: –3 volts to –25 volts  
2. Logic 0: +3 volts to +25 volts 

• The communications signal voltages are ‘unbalanced’, making them more 
susceptible to noise 

• They provide reliable communication up to about 15 m (50 ft) 
• Data rates of up to about 20 kbps are possible. In spite of its popularity and 

extensive use, it should be remembered that the EIA-232 interface standard was 
originally developed for interfacing data terminals to modems. In the context of 
modem requirements, EIA-232 has several weaknesses, most of which have 
arisen as a result of the increased requirements for interfacing other devices such 



���������	��
���
��
�	����  ��� 

as PCs, digital instrumentation and other peripheral devices in industrial plants – 
such as digital variable speed drives, power system monitors, etc. 

 
The main limitations of EIA-232 when used for data communications or data acquisition 

and control in an industrial environment are as follows: 
• The point-to-point restriction is a severe limitation when several ‘smart’ instru-

ments are used 
• The distance limitation of 15 m end to end is too short for most control systems.  

The 115 kbps rate is too slow for many applications 
• The –3 to –25 volts and +3 to +25 volts signal levels are not directly compatible 

with the modem standard power supplies in computers of ±5 volts and ±12 volts 
 

As a result of these limitations, a number of other communications interfaces have been 
developed. The RS-422 and RS-485 interface standards are increasingly being used for data 
acquisition and control systems. The most popular of these, the RS-485 standard (of which 
RS-422 is effectively a limited version), is discussed in the following sections. 

��"�  �!,-*��	
���
����

	�
���

The EIA RS-485 is the most versatile of the EIA standards, and is an expansion of the RS-
422 standard. The RS-485 standard was designed for two-wire, half duplex, balanced 
multidrop communications, and allows up to 32 line drivers and 32 line receivers on the same 
line. It incorporates the advantages of balanced lines with the need for only two wires (plus 
signal common) cabling.   

RS-485 provides reliable serial communications for: 
• Distances of up to 1200 m 
• Data rates of up to 10 Mbps 
• Up to 32 line drivers permitted on the same line 
• Up to 32 line receivers permitted on the same line 
 

The line voltages range between –1.5 V to –6 V for logic ‘1’ and +1.5 V to +6 V for logic 
‘0’. The line driver for the RS-485 interface produces a 5 V differential voltage on two wires.  
For full-duplex systems, four wires are required. For a half-duplex system, only two wires are 
required. 

A major enhancement of RS-485 is that a line driver can operate in three states (called tri-
state operation), logic ‘0’, logic ‘1’ and high-impedance. In the high-impedance state, the line 
driver draws virtually no current and appears to be disconnected from the line. This ‘disabled’ 
state can be initiated by a control pin on the line driver integrated circuit. This feature allows 
‘multidrop’ operation where up to 32 line drivers can be connected on the same line, although 
only one line driver can be active at any one time. Each terminal in a multidrop system 
must therefore be allocated a unique address to avoid any conflict with other devices on the 
system. RS-485 includes current limiting in cases where contention occurs. 

The RS-485 interface standard is very useful for data acquisition and control systems where 
many digital transmitters or stand-alone controllers may be connected together on the same 
line. Special care must be taken in software to co-ordinate which devices on the network 
become active. Where there is more than one slave device on the network, the host computer 
acts as the master, controlling which transmitter/receiver will be active at any given time. 

The two-wire transmission line does not normally require special termination. On short 
lines however, the leading and trailing edges of data pulses will be much sharper if 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

terminating resistors, approximately two times the characteristic impedance (Zo) of the line, 
are fitted at the extreme ends. These resistors are typically between 100 and 500 Ω and 
reduce the effect of reflections at the ends of the line. For twisted pairs, the characteristic 
impedance is typically between 100 to 120 Ω. 

During operation, there maybe periods of time when all RS-485 line drivers are off and the 
communications lines are in ‘idle’. In this condition, the lines are susceptible to noise pickup, 
which can be interpreted as random characters on the communications line. A solution to this 
problem is to incorporate 1 kΩ bias resistors as indicated in the terminated multidrop network 
of Figure 6.8. These resistors will maintain the data lines in a mark condition when the 
system is ‘idle’. 

 

 

Figure 6.8 
RS-485 multidrop networks 

6.3.1 RS-485 repeaters 
RS-485 line drivers are designed to drive up to 32 receivers on a network. This limitation can 
be overcome by employing an RS-485 repeater. The repeater is a two-port device that re-
transmits data received on one side, at full voltage levels, to the network on the other side. 
Consequently, another 31 devices may be connected for each repeater used, as shown in 
Figure 6.9. 
 



���������	��
���
��
�	����  ��� 

 

Figure 6.9 
 RS-485 multidrop networks 

��,� ��&�
����	����
��� �!�"��
	�� �!,-*��

	�
����

The main features of the four most common EIA interface standards are compared below: 
  
.�
	�&�

��� ��+!�"�� ��+!,-*�
Mode of operation 
 

Unbalanced Differential 

Max no. of drivers & receivers on 
line 
 

1 Driver 
1 Receiver 

32 Drivers  
32 Receivers 

Maximum cable length 
 

15 m 1,200 m 

Maximum data rate 
 

20 kbps 10 Mbps 

Maximum common mode voltage 
 

25 V +12 V to –7 V 

Driver output signal ± 5.0 V min 
± 25 V max 

± 1.5 V min 
± 6.0 V max 

Driver load 
 

>3 kΩ 60 Ω 

Power ‘On’ n/a 100 microA 
–7V≤Vcm ≤12V 

Driver output 
resistance  
(high-Z state) Power ‘Off’ 300 Ω 100 microA 

–7V≤Vcm ≤12V 
Receiver input resistance� 3 kΩ to 7 kΩ >12 kΩ 
Receiver sensitivity ±3.0 V ± 200 mV 

–2V≤Vcm ≤12V 

Table 6.6 
Comparisons of main features of EIA-232 and EIA-485 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

��*� .����/�&+��#���	
������

Another commonly used technique, based on EIA-232 but NOT part of the standard, is the 
current loop. This uses a current signal rather than a voltage signal. As shown in Figure 6.10 
a separate pair of wires is used for the transmitter current loop and receiver current loop. 
 
 

 

Figure 6.10 
The 20 mA current loop interface 

A current level of 20 mA, or sometimes 60 mA, is used to indicate a logic-1 and 0 mA, a 
logic-0. The use of a current signal enables a far greater separation distance to be achieved 
than with a standard EIA-232 voltage connection. This is due to the higher noise immunity of 
the 20 mA current loop that can drive long lines (up to 1 km) but at reasonably slow bit rates 
(up to a typical maximum of 9600 baud). This interface is mainly used between printers and 
terminals in an industrial environment. 

���� ����
���	
���
�����	0��
����

Interface converters are increasingly important today with the movement away from RS-
232C to the industrial interface standards such as RS-485. Since many industrial devices still 
use RS-232 ports, it is necessary to use these converters to interface the device to other 
network standards.  In addition, interface converters are sometimes used to increase the 
effective distance between two RS-232 devices, especially in noisy environments.  The block 
diagram of an RS-232 / RS-485 converter is shown in Figure 6.11. 
 

 

Figure 6.11 
Block diagram of an RS-232 / RS485 converter 



���������	��
���
��
�	����  ��� 

The RS-232/RS-485 interface converters provide bi-directional full-duplex conversion for 
synchronous or asynchronous transfer between an RS-232 and RS-485 node. These con-
verters may be powered from an external AC source, typically a wall mounted transformer. 
Some smaller units can be powered from the handshaking pins 9 and 10 (+12V) of the RS-
232 port, although for industrial applications externally powered units are recommended. 

When the communications network is operating over long distances, a useful feature of 
interface converters is optical isolation. This protects both the computer and the equipment, 
remotely attached to the communications equipment, from power surges picked up over long 
communication lines. 

Typical specifications for an RS-232/RS-485 converter are: 
• Data transfer rate up to 1 Mbaud 
• DCE/DTE switch selectable 
• Converts all data and control signals 
• LEDs for status of data and control signals 
• Powered from AC source or self-powered from pins 9 & 10 of EIA-232 port 
• Optically isolated (optional) 
• DB-25 connector (male or female) 
• DB-37 connector (male or female) 
 

The signal flow diagram for an RS-232 / RS-485 converter is shown in Figure 6.12. 
 

 

Figure 6.12 
Signal flow diagram for RS-232 / RS-485 converter 

��1� (��
������

A protocol is essentially a common set of rules governing the exchange of data between the 
transmitter and receiver of a communications network, and is normally associated with the 
packaging of data transmitted on the communications interface.   

A protocol is essential to the correct operation of the communication system and determines 
a number of important features including: 

• Initialization 
This initiates the protocol parameters and starts the transmission of data across the 
link. 

• Framing and frame synchronization 
This defines the beginning and end of a frame and ensures that the receiver can 
synchronize with the frame. 

• Flow control 
This ensures that the rate at which the receiver reads the data in from the 
transmitter is matched and no data is lost. 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

• Line control 
This applies to half duplex links where the transmitter indicates to the receiver 
when it can ‘turn the line around’ and commence transmitting in the opposite 
direction. 

• Error control 
Typical techniques used here are block redundancy checks and cyclic redundancy 
checks. 

• Timeout control 
This applies to the transmitter when it doesn’t receive an acknowledgement 
within a pre-defined period of time and assumes the receiver never received the 
original message. 

 
Just as there are a number of human languages, there are a considerable number of 

communication protocols that have been defined at different times by computer vendors and 
international bodies. Protocols on serial communications hardware linking the PC to data 
acquisition and control hardware are typically ASCII based. This allows much easier 
troubleshooting of communication problems where the level of understanding of industrial 
communication systems may be fairly low. In addition, a high level of integrity of data 
transfer is required where the PC controls critical equipment over the communications link. 
In an industrial environment where there may be a lot of electrical noise, a high degree of 
error checking, such as cyclic redundancy checks, is used. Several of the most commonly 
used protocols are discussed below. 

6 7.1 Flow control protocols 
Cooperative flow control, in which the transmitter and receiver operate under a common set 
of rules, is called a flow control protocol. Below are described the two most popular flow 
control protocols. 

Character flow protocols (XON/XOFF) 
This is a popular flow control protocol that has two characters assigned as XON (start) or 
XOFF (stop). Typically, the ASCII characters DC3 (Ctrl-S) and DC1 (Ctrl-Q) are assigned to 
XOFF and XON respectively. For example, consider a transmitter, a PC, sending a stream of 
characters to a printer. When the printer buffer fills to a certain predefined level, say 66%, it 
transmits an XOFF character back to the PC, instructing it to stop transmitting characters. 
Once the printer buffer has emptied to a preset level, say 33%, the printer sends an XON 
character to the PC, which then resumes transmission of the characters. A variation of this 
protocol is that the PC will resume transmission of the character stream when any character is 
received from the printer. 

Whole line protocols (ETX/ACK) 
The ETX/ACK protocol, designed by IBM, is based on the transmitter appending an ETX 
character after each line of data and waiting for the receiver’s ACK, requesting the next line 
of data. 

6.7.2 ASCII-based protocols 
The use of ASCII-based protocols is popular because of their simplicity and ease of 
troubleshooting. Their main disadvantage is that they are slow and unwieldy, especially when 
the system requires considerable amounts of data to be transmitted at high speeds. 



���������	��
���
��
�	����  ��� 

Consequently, the ASCII protocol is normally only used for slow systems with one master 
talking to a limited number of slaves. ASCII protocols are also popular for stand-alone 
instruments where a serial interface has been added, with no major design changes, to the 
existing system. Essentially, this means that the additional serial port is treated like another 
keypad by the instrument. 

Protocol structure 
A simple command/response ASCII protocol, used for communications between a personal 
computer and a digital transmitter is shown in Figure 6.13. The host computer always 
generates the command sequence. Communications are initiated by using command messages 
containing the address of the device and a two character ASCII command code. All analog 
data is returned as a nine-character string consisting of a sign, five digits, a decimal point, and 
two additional digits. The $ character is used to indicate a request from the master and the * 
character a response from the slave device. Both the command and response messages are 
terminated by a [CR] character. 
 

 

Figure 6.13 
Short form command and response messages 

In this example, the command above reads from the digital transmitter at address 1 and 
receives a value of 72.10 in the response message. 

A variation of the short form command and response messages is their long form 
equivalents. To ensure greater message integrity, and increase reliability, long form messages 
are included with a block checksum at the end of the message. In addition, the command 
message is echoed back within the response message from the slave device. The long form 
command is initiated using the # character instead of the $ character. An example of long 
form messages is shown in Figure 6.14. 

 

 

Figure 6.14 
Long form command and response messages 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

The calculation of the block checksum is performed simply by adding the hexadecimal 
values of all the ASCII characters in the message and converting the resulting hexadecimal 
number into its ASCII equivalent digits. This is shown in Figure 6.15 below. Note that where 
the summation is greater than 0 × FF, the most significant digit is discarded. 
 

+�����

��
�
�
���

����0
�#��

* 2A 
1 31 
R 52 
D 44 
+ 2B 
0 30 
0 30 
0 30 
7 37 
2 32 
. 2E 
1 31 
0 30 
SUM 2A4 

Figure 6.15 
Block checksum calculation 

Errors 
If the remote device receives a message with an error it will respond with the ? character. 
Alternatively, there may be no response at all if an incorrect address or a command prompt 
has been used.  Typical error response messages are indicated in Figure 6.16. 
 

 

Figure 6.16 
Typical error response message for an ASCII based protocol 

��-� ��������
��
��	�

There are three popular forms of error checking used in many protocols.  These are, in order 
of increasing error-detecting capability: 

• Character redundancy checks 
• Block redundancy checks 
• Cyclic redundancy checks 



���������	��
���
��
�	����  ��� 

6.8.1 Character redundancy checks 
Character redundancy checks rely on the transmitter and receiver agreeing to use even or odd 
parity to calculate the parity bit to append to each character. For example, if even parity is 
defined for a link, the 7-bit data byte ASCII 0110001 becomes 01100011, that is, a 1 is 
appended to the preceding seven bits to ensure that there are even numbers of 1 in the byte. 
The receiver checks that the arriving 8-bit byte has even parity. If it does, it extracts the first 
seven bits as data. If the received byte has odd parity, the receiver reports an error. 

6.8.2 Block redundancy checks 
In this method, an additional character called the block check character is calculated and 
added to the stream of characters transmitted down the communications channel. 

For example, transmission of the three characters A B Z would have a block check 
character (BCC) calculated, which is added to the end. The two different techniques for cal-
culating this block check character are indicated in Table 6.7. The techniques are: 

Vertical longitudinal block redundancy check 
This method relies on the calculation of even or odd parity for each individual character and 
then for all the characters in a block. The mechanism is indicated in the following table. 

Arithmetic checksum 
This checksum is calculated by adding all the bits and then discarding the carry bits.  A parity 
bit is also calculated for each individual character. 
 
 

.�
	�&�

���

��
�
�
���

+������2#�0
��	
�

� 3��
��
��4�

��	$�
#��	
������5�

���#	�
	�6�����5�

%�0�	'�

+��
�&�
�������5�#&�

,� ���������������� ����������������
�� ���������������� ����������������
H� ���������������� ����������������
�**� ���������������� ����������������

*���D���

�**�
A���
	��� �� V�

/������		����	����� ��,���H� V�,���H�

Table 6.7 
Two techniques for block redundancy checks 

6.8.3 Cyclic redundancy checks 
A more effective way of checking for errors is the cyclic redundancy check scheme that has a 
worst-case error checking ability of 99.9969%. There is thus minimal likelihood of errors 
slipping through undetected by the receiver. 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

The mechanism of operation of the CRC is fairly straightforward and is based on the 
following approach for a typical message which can be of variable length: 

• Take the MESSAGE and multiply by 216. 
• Divide (using modulo 2 arithmetic) by an arithmetic divisor (typically the CRC-

CCITT which is 1000 100 00001 00 001) to obtain a quotient and remainder.  The 
remainder is the CRC checksum. 

• Append the CRC checksum to the message. 
 

The receiver carries out the same calculation and compares the result with the checksum 
received. 

��)� .��#��������
�	$�7�
��
�	$�����
���


���&&#	��

��	�

����#�
��

When trouble shooting a serial data communications interface, a logical approach needs to be 
followed, to avoid wasting many frustrating hours trying to find the problem.   

A procedure similar to that outlined below is recommended: 
• Check the basic parameters 

Are the baud rate, stop/start bits and parity set identical for both devices? These 
are usually set on DIP switches in the device. However, the modern trend is to-
wards using software configuration from a terminal for these basic parameters. 

• Identify which is DTE or DCE 
Examine the documentation to establish what actually happens at pins 2 and 3 of 
each device. At the DTE device, pin 2 is used for transmission of data and should 
have a negative voltage (Mark), whilst pin 3 is used for the receipt of data 
(passive) and should be at approximately 0 volts. Conversely, at the DCE device, 
pin 3 should have a negative voltage, whilst pin 2 should be at 0 volts. If no 
voltage can be detected on either pin 2 or 3, then the device is probably not EIA-
232 compatible and could be connected according to another interface standard, 
such as EIA-422, EIA-485, etc. 

• Clarify the needs of the hardware handshaking 
When used, this causes the greatest difficulty and the documentation should be 
carefully studied to yield some clues about the handshaking sequence. 

• Check the actual protocol used 
This is seldom a problem but, when the above three points still do not yield 
results, it is possible that there are irregularities in the protocol structure between 
the DCE and DTE devices. 

From a testing point of view, section 2.1.2 in the EIA-232-C interface standard sounds too 
good to be true. It states that: 

‘…The generator on the interchange circuit shall be designed to withstand an open circuit, 
a short circuit between the conductor carrying that interchange circuit in the interconnecting 
cable, and any other conductor in that cable including signal ground, without sustaining 
damage to itself or its associated equipment…’ 

In other words, any pin may be connected to any other pin, or even earth, without damage 
and, theoretically, one cannot blow anything up! This does not mean that the EIA-232 
interface cannot be damaged. The incorrect connection of incompatible external voltages can 
damage the interface, as can static charges! 



���������	��
���
��
�	����  ��� 

When a data communication link won’t work, the following five very useful devices can be 
used to assist in analyzing the problem: 

• A digital multimeter (and paper clips?) 
• An LED 
• A breakout box 
• PC based protocol analyzer (including software) 
• Dedicated protocol analyzer (e.g. Hewlett Packard) 

6.9.1 The breakout box 
The breakout box, as shown in Figure 6.17 is an inexpensive tool that provides most of the 
information necessary to identify and fix problems on data communications circuits. 
 
 

 

Figure 6.17 
Breakout box showing test points 

A breakout box is connected into the data cable, to bring out all conductors in the cable to 
accessible test points. Many versions of this equipment are available on the market, from 
‘homemade’ versions using a back-to-back pair of male and female DB-25 sockets, to fairly 
sophisticated test units with built in diodes, switches and test points. 

Breakout boxes usually have a male and a female socket, and by using 2 standard serial 
cables, the box can be connected in series with a communication link. The 25 test points can 
be monitored by LEDs, a simple digital multimeter, an oscilloscope, or a protocol analyzer. 
In addition, a switch in each line can be opened or closed while trying to identify where the 
problem is. 

The major weakness of the breakout box is that, while one can interrupt any of the data 
lines, it does not help much with the interpretation of the flow of bits on the data 
communication lines. A protocol analyzer is required for this purpose. 

6.9.2 Null modem 
Null modems look like DB-25 ‘straight-through’ connectors and are often used when 
interfacing two devices of the same gender (e.g. DTE–DTE, DCE–DCE) or devices from 
different manufacturers with different handshaking requirements. A null modem, as shown in 



��������
	�
�����	���
�
���	�����������	�
���	�	�����������	�������	��� 

Figure 6.18, has appropriate internal connections between handshaking pins that ‘trick’ the 
terminal into believing conditions are correct for passing data. A similar result can be 
achieved by soldering extra 'loops' inside the DB-25 plug. Null modems generally cause more 
problems than they cure and should be used with extreme caution (preferably avoided!). 
 

 

Figure 6.18 
Null modem connections 

6.9.3 Loop back plug 
This is a hardware plug that loops back the transmit data pin to the receive data pin and 
similarly for the hardware handshaking lines. This is another quick way of verifying the 
operation of the serial interface without connecting to another system. 

6.9.4 Protocol analyzer 
A protocol analyzer is used to display the actual bits on the data line, as well as the special 
control codes, such as X-ON, X-OFF, LF, CR, etc. The protocol analyzer can be used to 
monitor the data bits as they are sent down the line and compared with what should be on the 
line. This helps to confirm that the transmitting terminal is sending the correct data and that 
the receiving device is receiving it. The protocol analyzer is useful in identifying incorrect 
setting of baud rate, parity, stop bit, noise or incorrect wiring and connection. It also makes it 
possible to analyze the format of the message and look for protocol errors. 

When the problem has been shown not to be due to the connections, baud rate, bits, or 
parity, then the content of the message will have to be analyzed for errors or inconsistencies. 
Protocol analyzers can quickly identify these problems. 

Purpose-built protocol analyzers are expensive devices and it is often difficult to justify the 
cost when it is unlikely that the unit will be used very often. Fortunately, software has been 
developed that enables a normal PC to be used as a protocol analyzer. The use of PCs, as test 
devices for many applications, is a growing field. 

6.9.5 The PC as a protocol analyzer 
The PC is proving to be a useful tool for monitoring serial line activity. The general means of 
configuring such a package is discussed in the following paragraphs. 

Basic setup parameters 
The initial step is to configure the package appropriately. This requires the following basic 
parameters to be appropriately set up: 

• Baud rate, parity, stop and data bits 



���������	��
���
��
�	����  ��� 

• Handshaking requirements (e.g. Request to Send and Data Terminal Ready) 
• Base address and interrupt settings of board. 

 
Generally, these items can be saved to a file for future use (where one can easily recall the 

required configuration). 
 

Other items that require attention are: 

Time stamping 
This allows the user to put a time value next to all activity on a port. This is especially useful 
where the protocol analyzer may be receiving data from two different sources at the same 
time and the exact time of arrival of each data item needs to be determined. 

Archiving 
Here one can save the data coming in on the serial port, (to a hard disk for example), by 
specifying the destination of the archive file and giving the length of the archival file. 

Trigger pattern setup 
This simply means that incoming characters are sequentially scanned against a predefined 
pattern, called the trigger pattern, until a match is detected. When the correct sequence of 
characters is detected, the data is saved to a file on the disk. This avoids the user being 
swamped by the vast quantity of data that can be encountered in protocol work. 

Display of the incoming data 
This is probably the most commonly used feature of a protocol analyzer. A specific display 
menu is selected to show the data coming into or leaving the protocol analyzer. 

Hardware features 
The protocol analyzer is normally used in conjunction with a breakout box to effectively 
perform any hardware debugging required. Figure 6.19 indicates the typical connections used 
for a PC based protocol analyzer. It should be noted that a PC should have two serial ports in 
order to adequately perform two way signal monitoring for two devices, both transmitting 
and receiving. 
 

 

Figure 6.19 
Typical PC based protocol analyzer connection 



7 

����������	
��	
����	
�����


�������������������


7.1 Introduction 
As with other forms of data acquisition hardware, stand-alone logger/controllers are 
designed to measure and record real world signals, as well as to act on these signals to 
provide control of a system or process. In addition, stand-alone logger/controllers have 
many features that distinguish their operation and use from other data acquisition 
hardware, such as plug-in boards and distributed I/O. 

This chapter looks at the hardware and software configurations of stand-alone 
logger/controllers, the system configurations for which they can be used, and the features 
that allow these devices to meet specific requirements in the field of data acquisition and 
control. 

7.2� Methods of operation 
Stand-alone logger/controllers are intelligent devices, capable of performing complex 
data acquisition and control functions, as well as making decisions based on current 
system or process conditions. To do this they must first be programmed, typically by a 
sequence of ASCII-based commands formatted by the host PC, which are interpreted and 
executed by the device so that it knows what actions to take at any point in time. 

Once programmed, the stand-alone device can continue to operate, taking sensor 
measurements, logging the data to memory and performing control functions, even when 
the host computer is not connected or functional.  From an operational point of view, it is 
this important feature that distinguishes stand-alone logger/controllers from other data 
acquisition hardware, such as plug-in boards and distributed I/O. 

Two methods of programming – the stand-alone logger/controller, and uploading 
logged data to the host PC, are available, either by the RS-232 serial communications 
interface or by using portable and re-usable memory cards.   



����������	
��	
����	
�����
�������������������

���


This flexibility allows stand-alone logger/controllers to be operated in a number of 
ways, depending on the required location, volume of data to be stored and availability of 
power: 

• Stand-alone operation with periodic data recovery (and programming where 
required) using memory cards or a portable laptop PC 

• On line to a host PC with periodic uploading of data (and programming where 
required) 

• On line to a host PC via modem, with periodic uploading of data (and 
programming where required), initiated by either the host PC or the remote 
device 

 
Where an application requires many more sensors than can be provided by a single 

stand-alone controller, and these are distributed over a large area, a distributed 
logger/controller network may be required. Each mode of operation, employing only a 
single logger/controller, is also applicable when more devices are connected as part of a 
distributed network. 

������ ���	�
���
	�

����		�
	��
�
����
	���������
����

The credit card size portable memory card provides a reliable media for transporting data 
and programs, but requires a memory card interface connected to the RS-232 serial port 
of the computer. This is shown in Figure 7.1. 
 

Computer Memory Card Interface

PCMCIA
Card

Remote Data LoggerStand-alone
logger / controller

Thermocouples Strain gauges Relays

 

Figure 7.1 
Using memory cards to program and log data from a stand-alone logger/controller 

Programming the operation of a logger/controller and recovering data using the 
PCMCIA card is especially useful when the logger/controller is remotely located and/or 
not connected to a host PC. Even when connected to a host PC, the storage capacity of the 
logger/controller can be greatly increased by leaving the PCMCIA card permanently 



��������������
����
�����������
���
���������������
��	
�������
�������


inserted in the device. This is its intended use since it also increases system reliability 
because data is logged directly to a semi-permanent storage medium. 

������ ��

��
��
������
���
�

As their name implies stand-alone logger/controllers are specifically suited to be operated 
independently of the host PC. This makes them especially useful where the device must 
be located in a remote and/or particularly harsh environment, or where they are unable to 
be continuously connected to a host PC, either directly or via modem. 

Special applications, such as temperature monitoring of a refrigerated truck, or weather 
reporting at a remote weather station, make use of a logger/controller in a stand-alone 
configuration. In these real life applications the stand-alone device can be either 
programmed, in the office or with a portable laptop, then left to operate, powered from a 
local power supply. Data stored in the device’s memory can be periodically uploaded 
using a portable laptop PC or memory cards. 

When operating as a stand-alone device there are several important considerations. 
Where it is necessary to power the unit from a battery supply, irrespective of whether the 
battery supply is rechargeable, battery power is not unlimited. This requires that the 
batteries be either recharged, or replaced where they are not rechargeable. Another 
important factor is that stand-alone units have a limited amount of memory. The greater 
the number of channels and the faster the sampling rate on each channel, the greater the 
number of samples that will be taken in a given time period. In time, the memory will 
become full. Care must be taken to keep the sampling rate of each channel to the 
minimum necessary, while still obtaining the information required. The memory capacity 
of a device can be greatly increased by leaving a higher capacity memory card in the 
device and logging data directly to the memory card. 

������ ���������

�����
����������������

The most common system configuration, and one which provides the highest system 
reliability, is a direct connection to the host PC via the RS-232 communications interface 
as shown in Figure 7.2. This setup allows frequent uploading of data, constant monitoring 
of alarm conditions and on-line system control. It is most likely implemented in industrial 
plants or factories, where critical processes must be constantly monitored and controlled. 
The maximum distance that the logger/controller can be located away from the host PC is 
dependent on the baud rate of the communications interface. When a single 
logger/controller is directly connected to the host PC, it can be configured to return data 
as soon as it is available. 
 

Host Computer

50 m

RS-232 Communication Interface

Stand-alone
logger / controller

Thermocouples Strain gauges Relays  

Figure 7.2 
A direct connection to a stand-alone logger/controller via an RS-232 serial interface 



����������	
��	
����	
�����
�������������������

���


Where an application requires more than one logger/controller, and each unit is 
distributed over a large physical area, for example, in an industrial plant or factory, the 
logger/controllers can be configured as part of a distributed RS-485 multidrop network. A 
single unit, deemed to be the host unit or local unit, can be connected directly to the host 
computer via the RS-232 serial interface, as shown in Figure 7.3, thus avoiding any 
requirement for an RS-232 to RS-485 serial interface card. 
 

Host Computer

50 m

RS-232 Interface
Max cable length - 1000 m

RS-485 Interface

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

+- + -

+ -+ -

 

Figure 7.3 
Distributed logger/controller network 

An advantage of this implementation is that other host PCs, printers or terminals can be 
connected to the RS-232 ports of other logger/controllers further increasing system 
reliability. This system configuration is shown in Figure 7.4. 
 

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

2nd Host Computer Printer

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Host Computer

 

Figure 7.4 
Distributed logger/controller network with additional host 



��������������
����
�����������
���
���������������
��	
�������
�������


How frequently logged data is uploaded depends firstly on how critical the immediate 
analysis of data is to the system or process being controlled, and secondly on how much 
memory is available and how quickly it will become full. 

How quickly the memory will become full is important for two reasons. During failure 
of the host PC or communications interface, there must be enough memory to allow data 
logging to continue without loss of data. In addition, a device connected to the host PC 
via a multidrop network can only return data when requested by the host PC. Where a 
large number of units are connected to the host, the memory of each unit must be large 
enough to allow data logging to continue without loss of data, until the next time the host 
requests a data upload. 

Aside from this specific limitation, it is good practice to recover data as often as 
possible since any sensor errors, power supply failures or problems with the unit itself 
will be detected early, thereby increasing system reliability. In addition, frequent data 
recovery will help to minimize the chance that data may be lost due to device failures 
such as battery-backed memory failure. 

������  ��������

�����
����������������

Another useful configuration is the connection of remote logger/controllers to the host PC 
using modems via either a telephone network or radio communications. In large factories 
or industrial plants, where one or more devices are distributed over a wide physical area, 
the closest logger/controller to the host PC may be too far away or too greatly affected by 
noise to allow connection to a host PC via the RS-232 communications interface. In such 
applications, the use of radio communications is a practical solution. When radio 
communications take place between the host PC and the distributed network, all 
communications must go through the logger/controller to which the remote radio modem 
is connected. This is shown in Figure 7.5. 
 

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Host Computer

RS-232 Radio communications link

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Modem Modem

 

Figure 7.5 
Remote connections to a logger/controller network via radio communications 



����������	
��	
����	
�����
�������������������

���


In many applications, the stand-alone logger/controllers are not contained within the 
same factory or industrial plant, but located at a distance beyond the capabilities of radio 
modem communications. An example of this would be a remote electricity sub-station 
used to monitor alarm conditions, provide on-line voltage, current, and power readings to 
a central control room. Communications between the host PC and the remote units via the 
telephone network is shown in Figure 7.6. A dedicated phone line allows frequent up-
loading of data to the host PC, constant monitoring of alarms and on-line system control, 
where required. 

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Host Computer

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Thermocouples Strain gauges Relays

RS-232

Telephone lineModem

Modem

 

Figure 7.6 
A remote connection to a logger/controller network via the telephone network 

7.3 Stand-alone logger/controller hardware 
The important features that give stand-alone logger/controllers the power and flexibility 
to operate, either as stand-alone devices, or as part of a distributed network, 
fundamentally lie in their relatively complex hardware structure. The simplified hardware 
schematic of a typical stand-alone logger/controller is shown in Figure 7.7. 

 

Figure 7.7 
Simplified hardware schematic of a stand-alone logger/controller 



�	������������
����
�����������
���
���������������
��	
�������
�������


The following hardware components discussed in this section are: 
• Microprocessor 
• Memory 
• Real time clock 
• Universal asynchronous receiver and transmitter (UART) 
• Counter/timer circuitry 
• Input multiplexer and elector 
• Power supply 
• Power management circuitry 
• Analog and digital I/O circuitry 

������ ����������������

At the heart of the stand-alone system is the microprocessor or microcontroller.  In 
conjunction with the embedded software (firmware), it provides the control and 
functionality of the system. 

It is important to clarify the distinction between microprocessors and microcontrollers.  
A microprocessor is just the central processing unit (CPU) part of a computer, without the 
memory, input/output circuitry, and peripherals needed for a complete system. The Intel 
8088 and 80286 chips are microprocessors. All other chips in the PC are there to add 
features not found within the microprocessor chip itself. However, when a 
microprocessor is combined with on-chip I/O, memory and peripheral functions, the 
combination is called a microcontroller. 

The microcontroller is probably the most popular choice for stand-alone systems, as it 
provides the necessary peripheral functions on chip. The advantages of microcontrollers 
include reduced cost, a reduction in chip count and hence reduction in printed circuit 
board ‘real estate’. 

������� �����!�

Non-volatile memory, used for the storage of sensor measurements and control 
parameters, is an important feature of a stand-alone system. Typically, random access 
memory (RAM) is used for data storage and requires some form of battery backup to 
maintain the contents during power loss. 

Manufacturers of stand-alone controllers are now incorporating memory card readers 
that allow measurement data to be stored directly onto memory cards.  The memory card 
can subsequently be removed and the data transferred to a host computer. 

���
��	
�����


The embedded operating system or firmware of a stand-alone device is stored in either 
read only memory (ROM) or erasable programmable read only memory (EPROM). 
Once-only programmable ROM technology is typically used in systems where high 
volume manufacturing is involved. 

EPROM technology is therefore more popular in low to medium volume stand-alone 
systems, as it allows manufacturers to modify firmware, incorporating new features or 
enhancements, without committing to the volume requirements of ROM technology. To 
allow easy installation and replacement of the ROM or EPROM chip during the lifespan 
of the device, these chips are usually mounted on the circuit board via a socket. 



����������	
��	
����	
�����
�������������������

�		


���	��
������
������
�����


Random access memory (RAM) is generally used in stand-alone systems for the storage 
of measurement data, control, and system parameters. The two most popular types of 
RAM technology are static and dynamic. Dynamic RAM requires periodic updating or 
refreshing, whereas static RAM does not require refreshing. However, the advantage of 
dynamic RAM over static RAM is a far greater memory capacity for a given area of 
silicon. 

Dynamic RAM is suitable for a personal computer used in an office environment where 
memory capacity is an important requirement. However, in a stand-alone system the 
advantage of static RAM lies in its ability to maintain the data contents, using a backup 
battery, in the absence of main power. This can be achieved with relative ease, because 
static RAM does not require refreshing, even in standby mode. 

������
��	
���������


Electrically erasable programmable read only memory (EEPROM) is a non-volatile 
memory technology, generally used for the storage of limited configuration data and 
control parameters. The moderate memory capacities and slow write cycle of EEPROM 
(typically 10 milliseconds) limit its application. 

Flash programmable read only memory (FlashPROM) is also a non-volatile memory 
technology, and is used for both mass data and program storage. FlashPROM is available 
in memory capacities ranging from 32 Kbytes to 2 Mbytes. The much shorter write cycle 
of FlashPROM is achieved at the expense of having to erase data on the chip in fixed-size 
blocks rather than a byte at a time. 

������
���	�


Similar to RAM, plug-in memory cards are also used in stand-alone systems for the 
storage of measurement and control data. Although there are a number of memory card 
manufacturers, the Personal Computer Memory Card International Association 
(PCMCIA) standard cards, have become very popular for use with notebook computers, 
particularly PCMCIA modems. 

PCMCIA memory cards are available in ROM, one-time programmable ROM, static 
RAM, UV EPROM, flashPROM and EEPROM technologies. The static RAM PCMCIA 
cards are the obvious choice for data storage in stand-alone systems, and are currently 
available in memory capacities ranging from 64 Kbytes to in excess of 8 Mbytes. 

An important advantage of memory cards in a stand-alone system is their ability to be 
removed and replaced with another blank card in the field, providing a convenient data 
transfer mechanism. Additionally, memory cards allow the user to purchase and install 
only the memory capacity required for a particular application. 

������  �
�����������"�

The real time clock (RTC) is an important part of any stand-alone system. It not only 
provides the necessary date and time information, but also provides periodic and alarm 
functions for triggering the reading of sensors and controlling outputs under program 
control. 

The RTC will be connected to the associated power management circuitry, allowing the 
system to remain in standby mode conserving power, until the RTC periodic event or 
alarm event wakes the system up.  The control software is then able to read and record 
sensor data and manipulate control outputs, before returning the system to the low power 
standby mode (sleep mode). 



�	������������
����
�����������
���
���������������
��	
�������
�������


In a typical stand-alone data acquisition application, sensor readings are taken at 
periodic intervals, allowing the system to return to the standby mode conserving power, 
during these periods of inactivity. For example, sensor readings may only be required 
once every 500 milliseconds. The RTC would, therefore, be programmed for an alarm 
wake-up event every 500 milliseconds (see low power mode). The system activity could 
be reduced to approximately 10 milliseconds in every 500 milliseconds, providing a 
substantial power reduction, which is very important for battery-operated systems. 

������ #
�$���
��
�!
����
���������$��%��

��������&#� '(�

The start, stop, and parity bits used for checking data integrity in asynchronous 
transmission are physically generated by the universal asynchronous receiver/transmitter 
(UART), located between the microprocessor bus and the line driver, which interfaces to 
the actual communications link. 

The main purpose of the UART is to look after all the routine housekeeping matters 
associated with interfacing between the parallel bus to the microprocessor and the serial 
communications link to the host computer. 

When transmitting, the UART performs a number of functions. These are to: 
• Set the correct baud rate for transmission 
• Interface to the microprocessor data bus and accept characters one at a time 
• Generate a start bit for each character 
• Add the data bits in a serial stream 
• Calculate and add the parity bit to the data stream 
• Terminate the serial group with the required stop bit(s) 
• Advise the microprocessor it is ready for the next character 

 
The receiving circuitry of the UART performs the following functions. These are to: 

• Set the correct baud rate for receipt of data 
• Synchronize the incoming data with the start bit 
• Read the data bits in a serial stream 
• Read the parity bits and confirm the parity 
• Read the stop bits 
• Transfer the character as a parallel data onto the microprocessor data bus 
• Interface the handshaking lines 
• Observe and report any errors associated with the character frame received. 
 

Typical errors that the UART can detect are: 
• Receiver overruns – bytes received faster than they are read 
• Parity errors – mismatch between parity bits and character frame 
• Framing error – all bits in the frame are zero or a break condition is reported 
 

A break condition occurs when the transmitter that holds the data line is in a spaced (or 
positive voltage) state for a period of time longer, than that required for a complete 
character. This is a method of getting the receiving UART to react immediately and 
perform some other task. 



����������	
��	
����	
�����
�������������������

�	



����)� ��*��������!�

Due to the nature of their operation and the purposes for which they can be used, stand-
alone devices have a variety of power sources: 

• Low voltage AC (9–15 V AC) 
• Low voltage regulated DC (11–17 V DC) 
• 9 V alkaline battery (6–10 V) 
• 6 V gel cell battery (5.6–8 V) 
 

A simplified power supply schematic of a typical power supply circuit is shown in 
Figure 7.8. 

 

 

Figure 7.8 
Simplified power supply schematic 

When both an internal non-rechargeable alkaline battery and an external AC or DC 
power supply are connected, the output of the regulator is increased to a voltage greater 
than the alkaline battery voltage (i.e. 10 V), so that power is drawn from the external 
supply and not from the internal battery. In this situation, the in-line diode connected to 
the alkaline + terminal prevents charging of the alkaline battery. 

It is not recommended that both internal and external batteries be connected. If two 
batteries are required, it is better if the external battery is 12 V and connected as external 
DC power. 

Extreme care should be taken to ensure that external batteries are connected with the 
correct polarity otherwise, damage might occur. In addition, when an external DC supply 
is grounded it must be a negative (–) ground. AC supplies should never be grounded. 

�������
��������


Where an internal gel cell rechargeable battery is connected, an external AC or DC power 
supply can provide temperature compensated charging with voltage set by the output of 
the switch mode regulator and charging current limited by the 0.22 ohm charging resistor. 
Sealed gel cell batteries may also be charged via a 12 V solar panel connected to the 
AC/DC power input terminals. The size of the solar panel required depends on the hours 
of full sunlight that can be expected. As a rule, one day in seven should be regarded as a 
charge day and the charge must be able to fully replenish the batteries on that day. 



�	������������
����
�����������
���
���������������
��	
�������
�������


�������
�� �


The maximum battery life that can be achieved depends on: 
• How often the input channels are scanned 
• The number of analog channels and how many are connected to sensors 
• The number of digital channels and how many are driving outputs 
• Sensor excitation power draw 
• Complexity of any calculations 

 
A precise calculation of the battery life is extremely involved, however manufacturers 

can provide battery life charts, based on the number of channels and the time between 
each scan of all the channels. 

����+� ��*����


	���
����������!�

All microprocessor systems need some supervisory functions that are analog rather than 
digital in nature.  For a typical system, these functions include power reset, battery 
backup switching for RAM and real time clock, and the watch dog timer (WDT). 

�����
���������


The reset circuit ensures that the microprocessor is in the reset state in the absence of 
power.  Embedded systems that may need to function in hostile environments require 
advanced reset circuitry that provides voltage threshold detection, independent of the rate 
of rise of the system power. 

�������
���!�"


The battery backup circuit ensures that the RAM and real time clock components receive 
a constant source of power. It also ensures that the RAM and real time clock are write-
protected and in the low power mode, when the main power supply fails. 

If the voltage from the main power supply falls below a preset level, then the battery 
backup circuit switches the RAM and real time clock power source to a supplementary 
battery supply. Additionally, the battery backup circuit ensures that the RAM and real 
time clock are write-protected, and in the low power sleep mode. 

#�$
"�$��
��	�


Two power states, wake and sleep (standby), ensure that the minimum amount of power 
will be used when the unit is not required to perform any data acquisition function.  For 
example, the device will wake up when: 

• RTC periodic interrupt signals a scan of the input channels is due 
• A memory card is inserted 
• Characters are received at the communications port 
• A key is pressed (where fitted) 

 
When an internal or external battery is being powered from an AC or DC supply then 

the low power sleep mode is not required to be entered. 

%����
	��
�����


The watch dog timer (WDT) circuit is intended to detect software-processing errors. 
During normal operation the software is responsible for periodically resetting the WDT.  
Failure to reset the WDT on a periodical basis indicates that the software is no longer 
executing the intended sequence, and accordingly the WDT initiates a system reset. 



����������	
��	
����	
�����
�������������������

�	�


In essence, the WDT is a fail-safe mechanism that resets the system if for some reason 
it ‘runs off the rails’. Although the WDT would seem a perfect fail safe mechanism for 
static or electrical noise induced problems, there is still the possibility of the software 
erroneously entering a loop, which continuously resets the WDT and hence never initiates 
a system reset. 

������ �

��	��
�����

����	��
���%,��

������
��"��
��������


Logger/controllers typically have multiple analog input channels. A special feature of 
these devices is that each channel can be configured for operation with a variety of 
sensors and signals. The simplified schematic of a typical input channel is shown in 
Figure 7.9. 

 

Figure 7.9 
Simplified schematic of analog input channels 

The versatility, that allows each channel to be configured for a wide range of sensors, 
different excitation requirements and either differential or single-ended input 
terminations, is provided by the analog signal selector. The configuration of each channel 
is provided by software commands that are interpreted by the logger/controller to switch 
the analog signal selector to the required settings. 

Sensor excitation is typically provided in the form of a low level constant current 
source (250 µA), for measuring resistance, a higher level constant current source for RTD 
and Wheatstone bridge measurements or a voltage source (usually unregulated) via an 
internal resistance, useful for powering some sensors. 



�	������������
����
�����������
���
���������������
��	
�������
�������


Input termination resistors, typically of 1 MΩ can be switched into the circuit to 
provide a return path for instrumentation amplifier bias currents. Where the termination 
resistors are not switched into the circuit, the input impedance seen by the sensor is of the 
order of 100 MΩ. 

�������
&��
��������


Logger/controllers typically have multiple dual-purpose digital I/O channels that share 
the same terminations and act as both digital inputs and outputs. This is shown in Figure 
7.10. 

 

Figure 7.10 
Schematic of digital I/O channel 

Digital inputs have a high impedance input resistance and are buffered to protect the 
more sensitive CMOS digital interface circuitry from damage from current surges. A     
30 V zener diode provides input over-voltage protection by limiting the incoming voltage 
to below the transient voltage threshold of the input buffer. 

The most commonly implemented form of digital output available on stand-alone 
loggers/controllers is the open collector output configuration capable of sinking 200 mA 
at 30 V. In this configuration, the zener also acts as a voltage limiter when the channel is 
used as an open collector output. 

The schematic of a typical digital counter channel is shown in Figure 7.11. Counter 
input channels are provided with a Schmitt trigger input buffer with threshold voltage set 
to 2 volts. This prevents spurious noise below the threshold value causing a count 
transition. The capacitor at the input to the Schmitt trigger input buffer provides filtering 
but limits the count rate to approximately 1 kHz (=1/RC). When it is removed, the count 
rate can be as high as 500 kHz. 

 

Figure 7.11 
Schematic of digital counter channel 



����������	
��	
����	
�����
�������������������

�	�


����-� ./�

���
���������

Expansion modules provide increased localized channel capacity for a data acquisition 
system using stand-alone logger/controllers. Expansion connectors provide an extension 
of the internal data and control bus lines of the logger/controller. When connected, 
additional analog input channels, digital I/O channels, and counter channels, on the 
expansion module, are treated as if they were part of the logger/controller to which they 
are attached. This is shown in Figure 7.12. 
 

Expansion
Module

Thermocouples Strain gauges Relays

Expansion
Module

Thermocouples Strain gauges Relays

Stand-alone
logger / controller

Power
Supply

Thermocouples Strain gauges Relays

Host Computer

 

Figure 7.12 
Connection of expansion modules 

7.4 Communications hardware interface 
Communications interface standards define the electrical and mechanical details that 
allow communication equipment from different manufacturers to be connected together 
and to function efficiently. Two standards are commonly employed for communications 
between PCs and stand-alone or distributed logger/controllers: 

• RS-232 standard  
• RS-485 standard 

������  �������
���0
���

As the RS-232 communications interface is standard on most IBM PCs and compatibles 
(i.e. COM1 and COM2 ports), stand-alone devices first used this interface for com-
munication to the PC. The RS-232 interface is discussed in detail in Chapter 6, however 
some of the most basic setup parameters for stand-alone logger/controllers are discussed 
below. 

'����
"���
"���������


Usually, the comms port parameters (i.e. start bits, data bits, stop bits) are fixed. The only 
user setable parameter is the baud rate, which is typically set by dip switches on the 
device. Commonly used baud rates are 300, 1200, 2400, 4800, 9600 and 19200. The 
optimum baud rate setting is a compromise between the speed necessary to transmit the 
necessary amount of data over the communications interface, and the speed required so 
that data can be transferred without error over the distance that the host PC is located 
from the local stand-alone logger/controller. 

'�������������
"���
�����������


Stand-alone loggers/controllers are typically equipped with a DB-9 connector. The pin 
allocations commonly used with the DB-25 and DB-9 connectors for the RS-232C 
interface are not quite the same and often provide a trap to the beginner. 



�	������������
����
�����������
���
���������������
��	
�������
�������


Figure 7.13 shows the standard connection between both the DB-25 and DB-9 connector 
of the host PC and the DB-9 connector of a stand-alone logger controller. 
 
 

 

Figure 7.13 
Communication cable connections to IBM host PC 

Great care should be taken when connecting stand-alone devices to the host PC. While 
the standard pin configuration is likely to be adhered to by manufacturers at the PC’s 
communications interface, it is possible (and often likely) that the data receive and 
transmit lines on remote stand-alone systems are on different pins of the DB-9 connector. 
It is therefore wise, to consult the manufacturers’ data sheets. 

Data handshaking is not usually employed on stand-alone logger/controllers as their use 
often leads to communication problems. Instead, the handshaking lines are connected at 
the host PC, as required by the communications software, and left unconnected at the 
logger/controller interface. 



����������	
��	
����	
�����
�������������������

�	�


������  ���-)���

�
���

With a growing need for a distributed logger/controller network, RS-485 interfaces have 
been added to the hardware. The RS-485 interface typically operates as a balanced two 
wire, half duplex and un-terminated network (see Chapter 6). However, the protocols 
used for communications on the network are often proprietary, with different manu-
facturers using undisclosed protocols, and error detection/correction methods, between 
devices. This does not alter the fact that communications to devices on the RS-485 
network still occur via a single logger/controller, known as the local device, which 
communicates to the PC via the RS-232 interface. 

An RS-485 repeater is used where more than 32 stand-alone devices are required on 
one network. A further 32 devices may be connected for each repeater used. 

������ �����
��
���
�1�����
��"��

���!��������0���

���

When logger/controllers are constantly logging data to memory, data gathered can be sent 
to the host PC via the communications interface at any convenient time before the 
memory becomes full. This allows great flexibility in obtaining the data from a stand-
alone device or a network of devices. However, when operating in real time, that is, data 
is continuously returned to the host PC from a single stand-alone logger/controller or a 
network of logger/controllers, an important consideration is ‘can the volume of data 
obtained, be transmitted over the serial communications link?’ This depends on a number 
of factors: 

• Baud rate 
• The number of channels being scanned 
• How often the channels are scanned 
• Whether the device is stand-alone or part of a distributed network 

(���	
�����
�����������������


Consider first, a stand-alone logger/controller connected to the host PC via the RS-232 
interface operating at 9600 baud. As we have seen previously, data sent over the 
communications interface is sent in a 10-bit frame consisting of 1 start bit, 8 data bits and 
1 stop bit. The time to transmit each byte of data at 9600 baud is 1.042 ms (t = 10 bits/ 
9600). 

Therefore, to transmit the maximum amount of data at the required baud rate, the 
maximum time between each data byte, being ready to be sent, is 1.042 ms. 

Consider a logger/controller that is scanning 10 channels. If, for each channel, seven 
bytes of data are sent (on average), plus there are another ten bytes for each scan of the 
input channels, then the total number of bytes to be sent for each channel scan is 80 bytes. 
The maximum time each channel scan could take is 83.36 ms (80 bytes × 1.042 ms). 
Therefore, all channels could be scanned at the maximum rate of approximately 12 Hz 
(1/83.36 ms). 

This calculation assumes that there are no hardware factors, such as multiplexer settling 
time, input amplifier-settling time etc, which limit this rate even further. Irrespective of 
the performance limitations imposed by the stand-alone communications interface, 
logger/controllers are not designed for high-speed data measurement. 

����������	
�����������������
���$��!


When operating as part of a distributed network, the considerations that determine the 
performance of the system are different.  Despite RS-485 being an extremely reliable 



��������������
����
�����������
���
���������������
��	
�������
�������


interface, even at high speed, the potential speed at which the network can operate is 
limited by a number of factors: 

• Each device in the system has a unique address and must be polled by the host 
computer for information. 

• Only one device can be polled at any time. 
• As the RS-485 network is half-duplex, the host PC must wait for a response to 

each request for data before polling the next device. 
• There is an inherent delay, or turnaround time, in responding to a host request 

irrespective of whether one byte or one hundred bytes of data are returned in 
the response.  This is because the device must interpret, process, then act on 
the command received before returning its response. 

• Where the RS-485 network is operating much faster than the RS-232 interface 
(i.e. more than twice as fast) the potential speed at which the data can be sent 
to the host PC is limited by the baud rate of the RS-232 interface.  Where this 
is not the case, the baud rate of the RS-485 network is the limiting factor. 

 
It has been shown in the example for a stand-alone device, that a device scanning 10 

input channels and returning 80 bytes of data to the host PC for each scan, would take 
83.36 ms to transmit the data. If the time required to transmit a ten-byte poll command is 
10.42 ms, and assuming a turnaround time of 1 sec, the total time to obtain the data from 
a single device is 1093.78 ms. The time taken for 10 devices operating in the same 
manner would be approximately 11 sec. Clearly, the system would not be able to operate 
in real time unless each device scanned its input channels and returned data to the host 
once every 11 sec. 

Where the channels of one or more of the devices must be scanned at a faster rate, the 
data should be logged to memory and returned at a more convenient time. 

������ #��
	�.����
��������

�����
�
���		����

Data loggers have traditionally used RS-485 as a type of networking system. RS-485 
works very well for multi-dropping up to 32 data loggers. As requirements have ex-
panded in the plant environment, we have seen a need to connect data loggers to 
expanding networks of systems. This has seen the rise of data loggers being connected via 
existing Ethernet networks. The advantages are obvious. One of the main problems with 
connecting data loggers on an RS-495 network is the limited range of access to the 
system. By having access to the data loggers over the Ethernet, the user can view and 
even change data anywhere the network is connected. This brings rise to the use of data 
loggers using the Internet. Intra- and inter-networking of data loggers also raises security 
issues.  How safe is the data?  Will someone that does not have authorization be able to 
access the hardware? These problems and their solutions will be the subject of much 
discussion when it comes to connecting Ethernet to data loggers.  

7.5 Stand-alone logger/controller firmware 
The hardware represented by stand-alone, or distributed loggers/controllers, and used as a 
part of a data acquisition system, provides the physical interface, which allows the PC to 
measure data from and control real-world signals. The software that is stored and 
executed from the ROM or EPROM of the stand-alone device, and known as the 
firmware, controls the continuous operation of the stand-alone device. However, the 
firmware does not initiate any data acquisition and control functions by itself. Instead, the 



����������	
��	
����	
�����
�������������������

��	


firmware can only interpret and execute the commands it receives from the host PC so 
that it knows what actions to take at any point in time. 

The firmware performs many functions including: 
• Overseeing the correct operation of all peripheral hardware devices (i.e. 

memory card, display, keyboard) 
• Interpreting, checks for error, then acting on commands received via the 

communications interface or from memory cards 
• Sending responses to the computer via the communications interface, 

including any errors that occur in the communication of the command and in 
the device itself 

• Performing the necessary data acquisition and control functions as specified 
by the programming commands received from the host PC 

 
The firmware for a stand-alone device is often upgraded by the manufacturer to provide 

new features and enhancements, and in some cases, bug fixes. Where remote stand-alone 
devices are operated within an RS-485 network, it is advisable that each unit runs the 
same version of firmware. 

The revision of the firmware is often shown on the local display upon power-up of the 
device. Where this is not the case, a system command to determine the firmware revision 
is usually provided. 

Quality manuals provided with remote stand-alone devices will include a firmware 
change history, with the revision numbers and brief description of the changes made with 
each revision. This allows the user to identify problems that are consistent with a previous 
revision of the software. 

7.6 Stand-alone logger/controller software design 
The power and flexibility provided by stand-alone logger/controllers has generically 
resulted in the hardware, and consequently the firmware that controls its operation, 
becoming necessarily complicated. This however, does not mean that the commands used 
to instruct stand-alone devices, need to be complicated. In fact, from a programming 
point of view it is beneficial to keep the basic command and data structure simple and 
readable. To this end, a simple ASCII-based command structure is commonly imp-
lemented. ASCII-based command and data response formats are popular because of their 
simplicity, especially for stand-alone systems where a serial interface has been added 
with no major design changes to the existing system. Essentially the additional port is 
treated like a keypad by the stand-alone device. 

Depending on the particular application, some of the tasks stand-alone devices are 
required to perform are as follows: 

• Take measurements from sensors at time intervals determined by the user 
• Make the measurements from sensors conditional on certain events or 

environments 
• Adjust the sensor measurement rate so that readings are taken more frequently 

during conditions of greater interest 
• Mathematically combine and manipulate sensor readings 
• Apply statistical procedures to reduce the number of readings that need to be 

stored 



��������������
����
�����������
���
���������������
��	
�������
�������


• Use different data formats so that the data transmitted to the host PC is 
suitable for a computer program (i.e. spreadsheet package) or a human 
operator 

• Store sensor measurements within the device or onto memory cards for later 
transmission to the host PC 

• Transmit measurements back to the PC as soon as they are taken. This can be 
by direct connection over the RS-232 interface, by modem through the 
telephone network, or by radio modem over a radio link 

• Control equipment external to the stand-alone device 
 
This section outlines the basic software protocol (command formats, data formats and 

error formats) required to program stand-alone logger/controllers as well as detailing the 
type of commands required to perform some of the tasks outlined above. 

It is not our purpose here to detail the exact software structure of a particular stand-
alone logger/controller, as this will vary between manufacturers. However, to provide an 
example, the most important commands, and their use in a program to control the 
Datataker range of loggers/controllers, by Data Electronics Australia Pty Ltd, is shown in 
Appendix H. 

��+��� ������1
��������

��0���
���

Irrespective of whether commands are sent to stand-alone devices via the serial 
communications interface or using memory cards, the format of the commands is the 
same. The PC always generates the command sequence. Programming the operation of 
the remote devices or reading data from them usually requires the user to enter ASCII 
command strings only. Commands are sent one at time by using a command terminating 
character after each command. For terminal emulation packages, this is typically the 
carriage-return (ASCII 0D). Multiple commands can be included on one line by 
separating them with a delimiter, typically a tab or space character, then terminating the 
command string with the command-terminating character. 

Although the command format is not standardized between manufacturers of different 
stand-alone devices, several formats are commonly used.  These are: 

%��	
������	�


These are entered as continuous ASCII text, most commonly in upper case characters and 
also contain one or more command options that specify the functions the command is 
required to perform. Although they vary between different manufacturers, command 
options are typically enclosed in brackets, separated by commas (no spaces), and can be 
random. 

Sometimes command options are referred to as command parameters since the user is 
required to append parameters that specify particular values associated with a command. 
These should not be confused with parameter commands. 

($����
������	�


These are used as an on/off control function that either enables or disables a particular 
feature or function of a stand-alone device, thereby controlling its operation. The feature 
‘X’ is enabled/disabled by sending the following switches: 

/X feature enabled 
/x feature disabled 



����������	
��	
����	
�����
�������������������

��



���������
������	�


These commands set a value internal to the device that the user may only want to set 
once, or at least not very often.  Parameter commands have a global effect, can be set at 
any time, take effect immediately and allow the user to set different performance options. 
A parameter command can often have a wide range of values within the parameter’s 
limits for a particular device. 

Where the stand-alone logger/controller is connected as part of a network, all 
commands must be preceded by the address of the device for which the command is 
intended. 

��+��� ������1
�����
�
�0���
���

All data returned to the host PC from stand-alone devices is in simple ASCII text format. 
The format of the ASCII string is entirely configurable by the user and will be sent in the 
format in which the stand-alone device was requested to send it. Data is typically 
presented in two mathematical formats: 

• Floating point format with ‘n’ (user configurable) significant digits 
• Exponential format with ‘n’ (user configurable) significant digits 

 
In addition, the ASCII string can be made more readable by the addition of the 

following text: 
• Units applicable to the measurement being taken (e.g. mV, Ohms, Hz etc) 
• The channel number and type of signal being measured or type of sensor 

being used (e.g. 1 V, 2 LM35) 
• A channel ID string (e.g. boiler temperature # 1) 
• The time and date indicating when the reading was taken (e.g. 10:30 

12/12/99) 
 

Where the data is to be imported into a spreadsheet software package, it can be 
formatted so that it contains no additional text except the time (HR:MIN:SEC format) and 
date (DD/MM/YYYY format), is delimited by commas (ASCII 2C), and each line of data 
is terminated by carriage return (ASCII 0D). 

If the stand-alone logger/controller is connected as part of a network, the data that is 
returned can be configured to include the address of the device from which the data was 
returned. 

��+��� .������������
	�

When an error occurs, either in sending a command to the stand-alone device or in 
performing some function, the error can be reported by returning error messages to the 
host PC.   

Although not differentiated on all makes of stand-alone device, three types of errors are 
commonly recognized: 

• Command errors 
• Channel errors 
• Operational errors 



��������������
����
�����������
���
���������������
��	
�������
�������


'�����	
������


Command errors are reported immediately after a command has been sent to the stand-
alone device. They indicate that all or part of the command was either not understood 
because of incorrect transmission from the host PC, the command contained an incorrect 
syntax or alternatively the command itself was not actionable. If a command refers to a 
set of channels, some of which are not used or are an incorrect type, then the appropriate 
error response is generated but the command is executed for those channels to which it 
applies. 
'������
������


Channel errors are reported when an error occurs in the measurement from a particular 
channel. The method of reporting channel errors often varies, depending on the stand-
alone device. As well as reporting an error, some devices return a default data error value 
(i.e. 99999.9) in the logged or displayed data. An example of this type of error is when a 
channel is read and the analog signal on that channel is out of range. 

�"���������
������


Operational errors occur when an operational limitation prevents the correct execution of 
a command. For example, an operational error occurs when the command input buffer 
becomes full. This can be due to the command being too long or successive commands 
being sent too quickly. An operational error would also occur when the data memory 
became full. 

�����
 �����


The error message is typically sent in some shorthand ASCII notation, but can be sent in a 
more descriptive (verbose) ASCII form.  In all cases the error format is determined by the 
configuration in which the remote device was requested to send it. The format is usually 
set by a command switch. It should be noted that error messages can be turned off – 
typically by a command switch. 

��+��� �!���������

���

System commands are used to perform system initialization, hardware initialization, 
variable initialization, system parameters setting (such as the time, date and password), or 
return the system status. 

��+�)� ��


�������

���

The versatility and simplicity of use of stand-alone devices lies in the fact that many 
different types of sensor can be interfaced to the input channels of the device.  In most 
cases it does not matter to which channel a sensor is connected, provided the device is 
informed which sensor is connected to each channel. The rate at which each channel is 
sampled is entirely variable. Some channels can be configured to be sampled con-
tinuously, while others take a measurement only when certain operating conditions are 
met. Once instructed to perform a data acquisition or control task (or many complicated 
tasks), the remote device will continue to operate by itself, taking measurements, storing 
data if required, or sending data back to the host PC.   



����������	
��	
����	
�����
�������������������

���


Channel commands allow the user to modify specified channels for: 
• Input configuration  
• Sensor excitation 
• Defining channel constants such as resistive shunts and attenuation factors  
• Identifying reference channels for thermocouples, Wheatstone bridges 
• Scaling of the channel data by spans, polynomials, factors specifying 

statistical analysis and histogram extraction 
• Specifying progressive difference, rate of change, integral assignment of 

channel data to temporary storage registers 
• Assigning unique names to channels 
• Specifying format and resolution of the channel data 
• Specifying whether data is returned to the host PC, logged or displayed 

locally. 
 
Some of these channel commands are discussed in more detail below. 

'������
�)��������


As we have shown, many sensors require some form of excitation in the form of a voltage 
supply or constant current source, to enable them to output a signal.  Excitation channel 
options inform the stand-alone device of the excitation that is required for a particular 
channel. 

(����������
�������
������	�


Channels can be read frequently but produce a statistical summary at longer intervals.  
This summary is returned, logged or displayed at intervals determined by the pre-defined 
schedules. Channels that require statistical sampling must include a channel option to 
indicate the statistical information to report. The following statistical channel options are 
typically available: 

• Average 
The sum of all the channel readings divided by the number of readings since 
the last statistical report. It is very useful in reducing sensor noise by 
averaging out cyclical noise, such as mains hum. 

• Standard deviation 
This is the measure of variability of data concerning the average. The vari-
ation may be due to noise or process changes. 

• Maximum and minimum 
This returns the maximum or minimum for the scan period and the time and 
date that it occurred. 

• Integral 
This returns the integral (or area under the curve) with respect to the time in 
seconds using a trapezoidal approximation.  The units of integration are those 
of the original reading multiplied by seconds. 

'������
	���
����"�������


Data manipulation and scaling of data read from a particular channel can be performed 
automatically before the data is stored, by using some of the following utilities: 



��������������
����
�����������
���
���������������
��	
�������
�������


• Channel scaling 
This automatically multiplies the value read by the fixed channel-scaling 
factor. 

• Intrinsic functions 
These are mathematical functions applied to the data read, for example: 

• Inverse (1/x) of the data 
• Square root (√x) of the data 
• Natural logarithm (1n[x]) of the data 
• Base ten logarithm (log[x]) of the data 
• Absolute value [x] of the data 
• Square (x*x) 

• Spans 
These allow sensors with linear calibrations to be converted to engineering 
units. The end points of the span are defined by the user and the linear 
calculation of input signal values performed automatically.  This is the same 
as applying a first order polynomial y = a + bx to the input value x, and is 
particularly suited for 4–20 mA current loops. 

• Polynomial equations 
Linearization of non-linear data can be performed using the ‘n’ order 
polynomial equation shown in Appendix E. 

• Channel variable storage 
Internal variables are used for temporary storage of the readings taken from 
one or more channel. These readings can then be added to the readings from 
other channels or mathematical calculations applied before the data is logged, 
displayed, or returned to the host. 

• Mathematical and logical calculations 
Mathematical expressions containing arithmetic operators (+  =  *  /  %), 
relational operators (<  >  <  = etc), logical operators (AND, OR, XOR, NOT) 
and trigonometric functions (SIN, COS, TAN etc) can be applied to the value 
read from the channel. 

��+�+� ����������

A schedule is a list that tells the remote device which channel or number of channels data 
is to read, as well as the method by which the reading of data on each channel is to be 
triggered.  When a trigger event occurs, all channels listed in the schedule are scanned, 
and depending on the type of schedule, the data logged, displayed or returned to the host 
PC. 

(���	���
��������


Three different schedule triggers are typically defined: 
• Trigger by interval 
• Trigger on event 
• Trigger when condition is true 



����������	
��	
����	
�����
�������������������

���


*������
��
�����+��


When using this method, the stand-alone device is programmed to take data readings on 
each channel at a specified scan interval. The format of the scan interval can be every x 
seconds, minutes, hours or days. Where no interval is defined, scanning will occur as 
rapidly as possible. 

*������
��
�+���


When using this method the occurrence of an event on a pre-determined digital input or 
counter input is used to trigger the scanning of all channels in the schedule.  

The trigger events commonly used are: 
• Trigger on positive voltage transitions (low to high) of a digital input 
• Trigger on negative voltage transitions (high to low) of a digital input 
• Trigger on both positive and negative transitions of a digital input 
• Trigger after ‘n’ counts of a counter input 
 

When schedule scanning occurs subject to a digital event, the stand-alone device must 
be constantly checking the required digital inputs or counter inputs for the event to occur. 
This requires that the device must not go into a low power sleep mode.  As there are 
limitations on the speed at which the device can do a check scan of the required digital or 
count inputs, care must be taken to ensure that the speed of the trigger event is not faster 
than the check scan rate, otherwise events may be missed. 

*������
$���
���	�����
��
����


In addition to the various methods of time interval triggering or event triggering a 
schedule channel scan, it is often possible to enable/disable the trigger event using the 
state of one or more other digital inputs. This would be very useful, for example, if an 
alarm limit was reached and this condition was used to enable the trigger event that 
activated the channel scans. 
*�"��
� 
����	���


Five types of schedule are typically defined: 
• Immediate schedules 
• Report schedules 
• Polled schedule 
• Statistical schedules 
• Alarm schedules 

&���	����
����	����


Immediate schedules are used for inspecting and testing input channels and sensors.  
When this schedule is triggered, either by a command from the host PC or an alarm 
condition becoming true, the designated channels are scanned only once and data is 
returned to the host only. The execution of an immediate schedule channel scan does not 
disrupt any report schedules that may be in progress and have a higher designated 
priority. 

��"���
����	����


This type of schedule is used for repeated data acquisition from selected input channels 
and forms the program building blocks of the stand-alone logger/controller program.  



��������������
����
�����������
���
���������������
��	
�������
�������


The channel scan for this type of schedule can be triggered by 
• Time intervals from 1 second to months 
• Digital events (conditional on digital state) 
• Counter events (conditional on count value) 
 

The data collected from report schedules can be returned to the host, logged or displayed. 
Stand-alone devices typically define several reporting schedules (e.g. RA, RB, RC, RD, 
RX), one of which can be used only for host requests (RX). 

�����	
����	���


A polled schedule that is executed only in response to a special command is assigned a 
unique identifier. This schedule will only occur when: 

• The host sends the host request command  
• An alarm condition issues the host request 

(����������
���
����	����


Statistical sub-schedules are used for repeated data acquisition from input channels at 
short intervals, but produce statistical data such as the average, minimum, maximum etc 
at longer intervals. One or more statistical sub-schedules, each with a unique schedule 
identifier, are defined. By default, statistical sub-schedules are scanned at the maximum 
possible rate unless a user-defined trigger is applied.  

The channel scan for this type of schedule can be triggered by 
• Time intervals from 1 second to months 
• Digital events (conditional on digital state) 
• Counter events (conditional on count value) 
 

Channels that are to be statistically sampled must include one or more channel options 
to indicate the statistic(s) that are required. 

�����
����	����


Alarm schedules determine the rate at which one or more channels will be scanned to 
check if an alarm condition has been reached (see Alarms, below). Multiple alarm 
schedules, each with a unique schedule identifier, are defined.  By default, alarm 
schedules are scanned at the maximum possible rate unless a user-defined trigger is 
applied.  

The channel scan for this type of schedule can be triggered by: 
• Time intervals from 1 second to months 
• Digital events (conditional on digital state) 
• Counter events (conditional on count value) 

'����������
����	����


When a stand-alone device is connected to a host PC, added flexibility can be achieved 
by allowing the user to stop, and then resume an individual schedule or all of the 
schedules, as required. This allows the user to temporarily halt the data acquisition 
process to check and/or change system parameters or the schedule triggers. 



����������	
��	
����	
�����
�������������������

���


��+��� ��
����

Alarms are used to warn of error conditions in an application, allowing the user to make 
decisions when input channel signals, timers, the time and variables exceed specified 
alarm limits.  Alarms are multi-functional and allow: 

• Logical comparisons with set points. The conditional tests available are: 
• less than (<) setpoint (low alarm) 
• greater than (>) setpoint (high alarm) 
• outside the range (<>) of two setpoints (high low alarm) 
• inside the range (><) of two setpoints (in range alarm). 

• Control of digital output channels based on the alarm condition, to turn on 
alarm lights, control relays, etc. 

• Issuing of messages to the host PC or local display that may include alarm 
data (i.e. alarm type) and alarm time and date. 

• Issuing of commands to control operation of the device. 
 

The manner in which alarms annunciate the resultant actions to be performed is often 
configurable, thereby providing flexibility for the user in meeting the requirements of a 
particular system or process.  

Alarms can annunciate actions in the following manner: 
• Alarm actions are performed only once when the alarm state first becomes 

true. 
• Alarm actions are performed only once and only when a predefined delay has 

elapsed after the alarm condition is first met.  When a delay period is defined 
no action is taken unless the delay period has elapsed and the alarm state has 
not changed during this period.  This acts as a filter to prevent nuisance 
alarms and unnecessary or rapid actions on digital outputs, which may be 
caused by noise. 

• Alarm actions are performed repeatedly while the alarm condition is true. 
• Alarm actions are performed repeatedly while the alarm condition is true after 

a pre-defined delay. 

'����������
������


When a stand-alone device is connected to a host PC, added flexibility can be achieved 
by allowing the user to stop, and then resume an individual alarm or all of the alarms, as 
required. This allows the user to temporarily halt a particular alarm, and to allow sensor, 
or actuator maintenance, without disrupting an application. 

��+�-� �
�
���		�
	�

��������$
��

(������
	���


There are two places to store data. The first is the internal memory, the second (where 
applicable), is the optional higher capacity memory card. The amount of data that can be 
stored is dependent on the memory capacity and/or the capacity of the memory cards, as 
well as the format of the data that is stored. 

If an empty memory card is inserted into the stand-alone device, then all data in internal 
memory is transferred to the memory card and logging continues to the end of the card 
memory.  If the memory card is removed, logging continues to internal memory.  When a 
partially full memory card is inserted then logging continues to internal memory. 



�
������������
����
�����������
���
���������������
��	
�������
�������


,�$
	���
��
�����	


Data is logged in a fixed non-ASCII format (i.e. 24-bit floating point format) to save 
space. A fixed length header at the start of each schedule scan is used for identification, 
time and date. When the data is unloaded, the identification header is used to interpret the 
data and add the required information for the user. This is why schedules cannot be 
overwritten when data has been logged. By using encoded headers and fixed length data, 
the amount of data required is greatly reduced. 

In stand-alone devices, memory is a fixed and unchangeable quantity. Two methods of 
logging data are available: 

• Stop when full mode 
Logging stops once the memory is full. This retains data in the order it is 
logged, the latest data being discarded. Where a memory card is used, the 
internal memory is used only after the memory card is full. 

• Overwrite mode 
In this mode of logging data, the memory is organized as a circular buffer.  
The oldest data may be overwritten when the memory is full. 

������+���
	���


Data can be unloaded back to the host PC either from internal memory or a memory card, 
usually using simple commands sent from the host PC. A number of options, defining 
what logged data is to be unloaded, are usually available.   

These are: 
• All the data, oldest first 
• The most recently logged data only  
• Data for a particular schedule 
• Data from the point in memory where the last unload finished  
• Data logged between certain times. 

7.7 Host software 
The software running on the host PC completes the data acquisition system utilizing 
stand-alone logger/controllers, and performs two functions: 

• Sends the commands that program the operation of the remote stand-alone 
devices, including what actions to take at any point in time, where to store the 
data read from the input channels, the data format, and what data to output on 
the output channels. 

• Acquires data from the remote devices and provides analysis, storage and 
presentation of the data. 

 
The simplest form of software provided with stand-alone devices is commonly in the 
form of a ready to use communications package with a graphical user interface. This is 
typical of proprietary software packages such as ‘DeTerminal’ provided by Data 
Electronics. 
Stand-alone loggers.  More advanced software, either supplied by the manufacturer or 
developed by the user, provides a higher level of user interface that eliminates the need 
for the formatting of individual commands and allows the automatic collection of data 
into files, for graphical presentation or analysis. 



����������	
��	
����	
�����
�������������������

�
	


Other off-the-shelf software packages that can be used with remote stand-alone devices 
are: 

• Any terminal emulator/communications package  
• Spreadsheet packages such as Excel, Lotus 123, Framework, Quattro 

 
In all cases, the format of the commands received and the data sent in return by the 

remote device is still in simple ASCII format, dictated by the firmware in the remote 
device. 

7.8 Considerations in using stand-alone logger/controllers 
Data acquisition and control using stand-alone logger/controllers is an orderly process.  
When designing a system that utilizes these devices, users should consider the following: 

• The first is the number of sensors and control outputs required, and their 
location in relation to the host PC. This determines how many 
logger/controllers are required and their location. Where the analog input or 
digital I/O requirements are greater than can be provided by a single unit, but 
the increased channel requirements are localized, expansion modules can be 
used.  If the increased I/O capability must be distributed, more than one 
logger/controller has to be used and can be connected as part of a distributed 
network. Where the units are remotely located (e.g. at a remote weather 
station or an electricity sub-station located in the country) and it is not 
practical for these devices to be connected directly to the host PC, then two 
options are available. These are: an operator uploads data using a memory 
card, and the remote device is connected via a modem to the host PC. 

• The volume of data that is to be logged. Stand-alone logger/controllers only 
have a limited amount of memory. How quickly the memory becomes full 
depends on the number of input channels to be read and their scan rate. If only 
a limited amount of data is to be stored then the internal memory may be 
sufficient. Increased capacity can be provided by a memory card. If the 
internal memory or the memory card becomes full frequently, then the 
logger/controller will require connection, either directly or via modems. 

• How often stored data must be uploaded to the host PC. Equally important as 
memory considerations, upload of data to a host PC, is largely determined by 
the type of application. Logging applications in which the data are gathered 
for analysis over an extended period (e.g. weather monitoring applications), 
clearly do not require constant uploading. The frequency of uploading would 
only depend on the memory capacity of the device and the amount of data 
being logged.  Critical applications requiring constant uploading of process 
data, feedback of alarms and on-line control would need to be directly 
connected to the host PC. 

• The availability of power. Where mains power is not available, the stand-
alone logger/controller is powered from a battery supply.  The battery life is 
determined by a number of factors and is not unlimited. In time, the battery 
will need to be charged or replaced. 



�
������������
����
�����������
���
���������������
��	
�������
�������


7.9 Stand-alone logger/controllers vs internal systems 

��2��� ��$

�
	���

Logger/controllers enjoy the same benefits of distributed I/O in that they are modular and 
can be located where they are required. Future expansion is easily catered to by 
increasing the number of devices in the network. 

As well as the ability to make decisions remotely, the use of stand-alone 
logger/controllers increases system reliability. This is because the stand-alone or 
distributed system can continue to operate even when the host computer is not connected 
or functional. It also increases overall system performance, by distributing the control 
decisions, algorithms and other analysis functions to localized processors. 

The analog inputs of plug-in data acquisition boards are typically designed to accept 
voltage signals. Where the signal levels are small, or the sensors do not output voltage 
signals, or are remotely located from the PC and affected by noise, then some form of 
external signal conditioning is required. Unlike distributed I/O, logger/controllers 
typically have more than one channel per unit, and each one of these channels can be 
configured for operation with a variety of sensors and signals, not just one type of sensor 
for one channel. Whilst stand-alone devices do not necessarily have inbuilt filters, these 
are most often not required since the units can be located very close to the signal source 
and therefore not as susceptible to noise. In addition, statistical sampling methods, such 
as averaging a number of measurements or integrating over the noise cycle, help to 
eliminate cyclical noise such as mains hum. 

As stand-alone loggers/controllers can be placed near the signal source and do not 
necessarily have to be connected to the host PC, the requirement for lengthy cabling, 
which can be affected by noise, is greatly reduced. 

A final advantage is that logger/controllers often include a local operator interface, 
providing feedback on a system or process at the location of the device. 

��2��� ���
�$

�
	���

When connected to the host PC, irrespective of whether there is a single logger/controller 
or a network of devices, all communications must proceed via the RS-232 interface. The 
speed at which data can be transmitted to and from the logger/controller(s) is limited by 
the speed at which data can be transferred across the single RS-232 communications path. 
This is an important consideration where a number of units send information to be logged 
by the host PC or there is a large amount of data to be uploaded. In either case, the 
number of samples that can be taken from each logger/controller is limited by the total 
amount of information that can be sent via the communications interface. 

Unlike specialized high-speed plug-in DAQ boards, stand-alone logger/controllers are 
not designed for the sampling of high frequency signals. Logger/controllers do not enjoy 
the benefits of high-speed microprocessors, high-speed data bus and fast memory storage 
facilities such as DMA that characterize modern PCs. Instead, these devices are powered 
by local, dedicated microprocessors or microcontrollers. The microprocessor not only 
performs many tasks associated with the operation of the hardware in the device but 
possibly multiple data acquisition and control tasks associated with the program they are 
required to execute. This necessarily means that when operating at full capacity these 
loggers/controllers can only sample signals at a very low sampling rate and are therefore 
more suited to applications where the signals change more slowly. 

A final limiting factor, especially where the logger/controller is operating in stand-alone 
mode, is that the device has a limited amount of memory. The greater the number of 



����������	
��	
����	
�����
�������������������

�




channels and the faster the sampling rate on each channel, the greater the number of 
samples that will be taken in a given time period. In time, the memory will become full. 
Care must be taken to keep the sampling rate of each channel to the minimum necessary, 
while still obtaining the information required. 

Plug-in data acquisition boards can continuously sample data and transfer it directly to 
the PC’s memory. Where even greater storage capacity is required, or the data is to be 
stored permanently, it can be transferred to the hard disk. 

 



8 

������������	
��
�

8.1 Introduction 
The communications standard now known as the GPIB (general purpose interface bus), 
was originally developed by Hewlett Packard in 1965 (when it was called the Hewlett 
Packard interface bus – HPIB), to connect and control their programmable test 
instruments. Due to its speed, flexibility, and usefulness in connecting programmable 
instruments to computers, it gained widespread acceptance, and was adopted by different 
manufacturers for their own programmable instrumentation. 

It soon became clear that with the introduction of digital controllers and programmable 
instruments from different manufacturers, a standard high-speed data communications 
interface was required so that instruments from different manufacturers could 
communicate with each other. Following a study by a committee of the IEEE, the 
interface was published in 1975 as the IEEE Standard 488-1975. The standard was 
updated, with minor revisions, in 1978, to coincide with the international issue of the 
standard as IEC-625, the latter designation being more commonly used in Europe. The 
current version of the same standard is referred to as the IEEE Standard 488.1-1987. This 
standard greatly simplified the connection of programmable instrumentation by defining 
the mechanical, electrical and hardware protocol specification of the communications 
interface. For the first time, instruments from different manufacturers were connected by 
a standard cable. However, the standard did not address the data formats, status reporting, 
message exchange protocol, common configuration commands, or device-specific com-
mands, all of which were subsequently implemented differently by different equipment 
manufacturers. 

In 1987, the IEEE Standard 488.2 was introduced to define data formats, status 
reporting, controller functionality, error handling, and common commands. IEEE 488.2 
concentrates on software protocol issues and maintains full compatibility with devices 
that comply with the hardware-oriented IEEE 488.1 standard. 

EOI. In 1990, a group of instrument manufacturers announced a further extension of 
the standard, known as SCPI (standard commands for programmable instruments), which 
uses IEEE 488.2 as a basis and defines a common command set that can be used for 



������������	
��
���
��

programming instruments with any hardware link. Figure 8.1 illustrates the relationships 
among the standards. 

 

 

Figure 8.1 
IEEE 488.1, IEEE 488.2, and SCPI standards 

Apart from the three standards associated with the term IEEE 488 (IEEE 488.1, IEEE 
488.2, and the SCPI) the term GPIB is often used interchangeably. 

The GPIB is an interface design that allows the simultaneous connection of up to 15 
devices or instruments on a common parallel data communications bus. This allows 
instruments to be controlled or data to be transferred to a controller, printer, or plotter. It 
defines methods for the orderly transfer of data, addressing of individual units, standard 
bus management commands, and defines the physical details of the interface. These are 
discussed in the following sections. 

8.2 Electrical and mechanical characteristics 
The GPIB bus is carried inside a shielded 24-wire cable with standard connectors at each 
end. The connector used is the Amphenol MICRORIBBON, Cinch Series 57 
MICRORIBBON, or AMP CHAMP type, shown in Figure 8.2, which has both a plug and 
receptacle (male/female). Adding a new device to the bus is done by connecting a new 
cable in a star or chain configuration. Screws hold each connector securely to the next 
one. Since the 24-pin connectors are usually stackable, it is easy to connect or disconnect 
devices to the bus. 



�
������
��
���������
��������	������	������	�����	��	
���	�������������

 

Figure 8.2 
GPIB connector (IEEE 488) and pin assignments 

The 24 lines, in each cable, consist of 8 data lines and 8 pairs (16) of control and bus 
management lines. The data lines are used exclusively to carry data, in a parallel con-
figuration, one byte at a time, along the bus. The control and bus management lines are 
used for various bus management tasks that synchronize the flow of data. When data or 
commands are sent down the bus, the bus management lines distinguish between the two. 
The GPIB uses binary voltage signals to represent the information that is carried on the 
lines of the bus. It uses the symbols ‘true’ and ‘false’ to represent the two states of 
voltages on the lines. The GPIB uses the logic convention called ‘low-true’ or negative 
logic, where the lower voltage state is ‘true’ and the higher voltage state is ‘false’. 
Standard TTL voltage levels are used. For example, when a line is true, or asserted, the 
TTL voltage level is low (≤ 0.8 V), and when the line is ‘false’, or unasserted, the TTL 
level is high (≥ 2.0V). The ‘low-true’ logic means that any device can set a bus control 
voltage ‘low-true’, but no line can be at a voltage ‘high=false’ unless all the devices on 
that line allow it to go ‘high=false’. 

8.3 Physical connection configurations 
The devices on the GPIB can be connected in a star configuration, as shown in Figure 8.3, 
or in a chain (linear) configuration as shown in Figure 8.4. 

A star configuration is one where each instrument is connected, by means of a separate 
GPIB cable, directly to the controller. The connectors are all connected to the same port 
at the controller. A drawback to this simple configuration is that all of the devices on the 
bus must be relatively close to the controller because of the length limitation of each 
cable. 



������������	
��
���
��

Instrument
A

Instrument
B

Instrument
C

Host Computer

GPIB controller

 

Figure 8.3 
The GPIB star configuration 

In the chain configuration, each device, including the controller, is connected to the next 
in a chain. The controller does not have to be the first or last device in the chain, but can 
be linked in anywhere. It is a controller only in the sense that it co-ordinates the events on 
the bus. Physically and electrically, it is similar to any other device connected to the 
GPIB. This configuration is usually the most convenient way to connect equipment. A 
disadvantage of the chain configuration is that the software may require reconfiguration if 
a device and its cable are removed. 
 

Instrument
A

Instrument
B

Instrument
C

Host Computer

GPIB controller

 

Figure 8.4 
The GPIB chain (linear) configuration 

Although the star and chain configurations are suggested for GPIB, connections can be 
made in any other way, provided that the following rules are observed: 

• All devices are connected to the bus 
• No more than 15 devices, including the controller, may be on the bus, with no 

less than two thirds powered on 
• Cable length between any two devices may not exceed 4 meters with an 

average separation of 2 meters over the entire bus 
• Total cable length may not exceed 20 meters 

 
A single device on the GPIB can transfer data up to 14 other devices. Because the GPIB 
uses asynchronous (un-clocked) handshaking, the actual data transfer rate is more 
dependent on the devices themselves rather than on the hardware interface. 

8.4 Device types 
From a data communications standpoint, there are four different groups of devices that 
communicate on a GPIB interface: 



�
������
��
���������
��������	������	������	�����	��	
���	�������������

• Talkers 
A talker is a one-way communicating device that can only send data to a 
listening device. It does not receive data. The talker waits for a signal from the 
controller and then places its data on the bus. Only one device can talk at a 
time. Common examples are simple DVMs (digital voltmeters) and some A/D 
converters. 

• Listeners 
A listener is a one-way communicating device that can only receive data from 
another device. It does not send data. It receives data when the controller 
signals it to read the bus. Common examples are printers, plotters, and 
recorders. 

• Talkers/Listeners 
A talker/listener has the combined characteristics of both talkers and listeners. 
However, it is never a talker and a listener at the same time. A common 
example is a programmable DVM, which is a listener while its range is being 
set by the controller and a talker while it sends the results back to the 
controller. Most modem digital instruments are talker/listeners as this is the 
most flexible configuration. 

• Controllers 
A controller manages and controls everything that happens on the GPIB. It is 
usually an intelligent or programmable device, such as a PC or a 
microprocessor-controlled device. It determines which devices will send data 
(talkers) and which will receive data (listeners), and when. To avoid 
confusion in any GPIB application, there can only be one active controller, 
called the controller in charge (CIC). The key word is active. There can be 
several controllers, but to avoid confusion, only one can be active at any time. 
A controller also has the features of a talker/listener. In some cases, when 
several PCs are simultaneously connected on a GPIB, one is usually 
configured as the controller and the others configured as talkers/listeners. The 
controller needs to be involved in every transfer of data. It needs to address a 
talker and a listener before the talker can send its message to a Listener. After 
the message is sent, the controller un-addresses both units. Some GPIB 
configurations do not require a controller, e.g. when only one talker is 
connected to one or more listeners. A controller is necessary when the active 
or addressed talker or listener must be changed. In this case, a device sees its 
talk address on the bus, and knows that it has to act as a talker and hence 
required to send data. Conversely, when it sees its listen address on the bus, it 
knows it is required to act as a Listener and hence receive data. 

8.5 Bus structure 
The GPIB interface system illustrated in Figure 8.5 consists of 16 signal lines and 8 
ground return or shield drain lines. 



������������	
��
���
��

 

Figure 8.5 
The GPIB bus structure 

   The 16 signal lines consist of data lines (D101–D108) and 8 control lines. Three of the 
eight control lines are the handshaking lines that coordinate the transfer of data (DAV, 
NRFD and NDAC), while the remaining five lines are used for bus control and 
management (ATN, REN, IFC, SRQ and EOI). The 8 ‘ground’ lines provide electronic 
shielding and prevent bus control signals from interfering with one another or from being 
influenced by external signals.  A summary of the signal lines on the GPIB is as follows: 

• Data bus lines  D101 – D108 
• Handshaking lines DAV – Data available 

     NRFD – Not ready for data 
     NDAC – No data accepted 

• General interface ATN – Attention 
• Management lines FC – Interface clear 

     SRQ – Service request 
     REN – Remote enable 
     EOI – End or identify 

������ �����	
��
�

The eight data lines D101 to D108 carry both data and command messages. All 
commands and most data use the 7-bit ASCII code, in which case the eighth bit, D108, is 
either unused or used for parity. The state of the attention (ATN) line determines whether 
the information is data or commands. Command messages are sent with the ATN line 
asserted, while data messages are sent with the ATN line unasserted. 

������ ����������������������
��
�

Five signal lines manage the flow of information across the GPIB. These are described 
below. 

• ATN (attention) – The controller asserts the ATN line ‘true’ when it uses the 
data lines to send commands. All devices become listeners and participate in 
the communication. When ATN is unasserted, information on the bus is 
interpreted as data. 

• IFC (interface clear) – This line can only be controlled by the system 
controller, which drives the IFC line to initialize the bus and become 



��������
��
���������
��������	������	������	�����	��	
���	�������������

controller in charge (CIC). The IFC line is the master reset of the GPIB and 
when asserted all devices return to a known quiescent state. 

• REN (remote enable) – The system controller drives the REN line to put 
devices into a remote state. When the REN line is asserted and a device is 
addressed to listen, the device is placed into a remote programming state. 

• SRQ (service request) – Any device can drive the SRQ line to asynchronously 
notify the CIC that it needs service. It is the responsibility of the CIC to 
monitor the SRQ line, poll the device, and determine the type of service the 
device needs.  SRQ will remain asserted until the CIC polls the device 
requesting service. 

• EOI (end or identify) – The EOI line has two purposes. Its first use is when a 
talker asserts the EOI line to indicate the last byte of data in the message 
string.  A listener stops reading data when EOI is asserted ‘true’. A second use 
for the EOI line is to tell devices to identify their response in a parallel poll. 

������ ����
������
��
�

Three handshake lines asynchronously control the transfer of message bytes between 
devices.  The GPIB uses a three-wire interlocking handshake scheme that guarantees that 
message bytes on the data lines are sent and received without error.  The handshake lines 
and their use are discussed below. 

• NRFD (not ready for data) – The NRFD handshake line indicates whether a 
device is ready to receive a message byte or not. When receiving commands, 
the line is driven by both talkers and listeners, and only by listeners when 
receiving data messages. 

• NDAC (no data accepted) – This line indicates whether a device has or has 
not accepted a message byte. NDAC is driven by all devices (i.e. talkers and 
listeners) when receiving commands, and only by listeners when receiving 
data messages. 

• DAV (data valid) – The DAV handshake line indicates whether signals on the 
data lines are stable and therefore valid and can be accepted by devices. The 
controller controls DAV when sending commands and the talker controls 
DAV when sending data. 

8.6 GPIB handshaking 
Data is transmitted asynchronously on the GPIB parallel interface one byte at a time.  The 
transfer of data is coordinated by the voltage signals on the three bus-control ‘handshake’ 
lines (DAV, NDAC and NRFD). The process is called a three-wire interlocked 
handshake. Handshaking ensures that a talker will put a data byte on the bus, only when 
all listeners are ready and will keep the data on the bus until it has been read by all 
listeners. It also ensures that listeners will accept data only when a valid byte is available 
on the bus. 

The talker first un-asserts DAV then monitors the NDAC and NRFD lines. The talker 
must wait for the NRFD line to go high (‘false’) before any data can be put onto the bus. 
The NRFD line is controlled by the listeners. Only when NRFD voltage is high (‘false’) 
are all listeners ready to receive data. A short delay after NRFD goes high, the talker 
asserts DAV ‘true’ (voltage low) to indicate valid data is available on the bus. The delay 
is determined by the type of drivers the talker uses on the data lines (trio-state requires 
less delay than open collector). When the listeners detect the low voltage level on DAV, 



������������	
��
������

they read the byte on the data lines and immediately assert the NRFD line to indicate that 
no further data should be sent. As each listener accepts the data, it releases NDAC. After 
the last listener has accepted the data, the NDAC line voltage goes high (‘false’), 
signaling the Talker that the data has been accepted. Only when the data byte has been 
accepted by all the listeners, can the talker allow DAV voltage to go high (‘false’) and 
remove its data from the bus. The listeners then assert NDAC to signify that the data 
transfer has ended, in preparation for the next cycle. Figure 8.6 illustrates this hand-
shaking sequence for one message byte. 

 

 

Figure 8.6 
GPIB handshaking timing diagram 

It should be noted that since a talker waits until all listeners are ready (NRFD is ‘false’) 
before sending a message byte and waits for all listeners to accept the message byte 
(NDAC line is ‘false’) before transferring any more data, the maximum data transfer rate 
of the GPIB is determined by the slowest listener on the bus. 

8.7 Device communication 
GPIB devices communicate with other interconnected GPIB devices by passing device-
dependent messages and interface messages one byte at a time through the parallel data 
communications interface. 

• Device-dependent messages contain specific information related to a 
particular device, including programming instructions, measurement results, 
device status, and data files. These messages are often called data messages. 

• Interface messages manage the operation of the communications bus, 
performing such tasks as initializing the bus, addressing, and disabling 
devices, setting modes for remote or local programming. Such messages are 
usually referred to as command messages. The term ‘command message’, 
used here, can sometimes be confused with device-specific commands that are 
contained in data messages. For example, the identification query command 
*IDN? that is used to identify a particular device, is a command that a device 
understands but is sent in what is known as a GPIB data-message. 



��������
��
���������
��������	������	������	�����	��	
���	�������������

������ ����������


���

Each device connected to the GPIB has a unique device address and each device must be 
designed with enough intelligence to identify whether the data or command sent down 
the data lines is meant for it or for another device. Device addresses are arbitrary and are 
set by the user, usually on a DIP switch, located on the back of the device, or by 
programming the device software. For the controller, each connected device is identified 
in the software of the controller’s program. The only limitation in choosing a device 
address is that it must be an integer number in the range 0 to 30. 

To communicate over the GPIB, the controller must first address the appropriate 
devices. To address a device and configure it to take part in communications on the bus, 
the controller sends an address command message to the required device. Address 
command messages have the format shown in Figure 8.7. 

 
 

������ ������ ������ ������ ����
� ������ ������ ������

� ��� ��� �� �� �� �� ��

Figure 8.7 
Address command message format 

Bit 0 to bit 4 represent the binary GPIB primary address of the device, to be included in 
the communication.  If bit 5 (LA) is set, the device with the primary address specified is 
to be configured as a listener, while bit 6 (TA) is set if the device is to be configured as a 
Talker. Bit 7 is considered a don’t-care bit as it is never used, and can assumed to be zero. 
The command message byte for a device with address of 0x05, to be configured as a 
listener, would be 0x25 (‘%’). The command message byte for the same device 
configured as a talker would be 0x45 (‘E’). 

������ �� �����


�����!
��
�

Once a communication has taken place between two or more devices, the controller must 
clear the bus of the current talker and listener(s) before assigning a new talker and 
listener(s). Sending an unused talk address, or more typically, the un-talk (UNT) 
command message (0x5F), un-addresses the current Talker. This command is not 
required since addressing one talker automatically un-addresses all others. The current 
listener or multiple listeners are automatically un-addressed using the un-listen (UNL) 
command message (0x3F). A single listener cannot be un-addressed if multiple listeners 
have been previously addressed. 

������ "���
���
����������

���
�

There are three methods for terminating data messages: 
• EOI method – When using this method, the EOI bus control line is asserted 

when the talker places the last byte of data onto the data bus. This line is 
monitored by all listeners. 

• EOS method – This method does not make use of any bus control lines, 
instead, appending a pre-determined end-of-string byte to the end of the data 
string and sending this data byte to the listener(s). The EOS byte is usually the 
new line character (0x0A) or the carriage return character (0x0D) 



������������	
��
����
�

• Count method – Using the count method requires that the controller stop the 
talker from sending any more bytes once the specified number of bytes has 
been sent to the listener. This can be achieved by asserting the NRFD and 
NDAC bus control lines, but requires the application software for the GPIB 
controller hardware to control this facility. 

����#� $���
�����������
!
��������

Assuming the GPIB has been initialized and configured correctly, the protocols for 
sending and receiving data are as follows: 

��	
�	��
����
1 Set ATN ‘true’ and EOI ‘false’.  
2 Send the controller talk address. 
3 Send the UNL command message. 
4 Send the listen address for each device to be configured as a listener. 
5 Set ATN ‘false’. 
6 Send the required data bytes one byte at a time. 
7 Send the terminating character or set EOI ‘true’. 

�������	��
����
1 Set ATN ‘true’ and EOI ‘false’. 
2 Send the UNL command message. 
3 Send the controller listening address. 
4 Send the required talker address. 
5 Set ATN ‘false’. 
6 Receive data bytes until terminating character received or EOI ‘true’. 

8.8 IEEE 488.2 
IEEE 488.2 was drafted to correct problems that arose with the original IEEE 488 
standard. At the same time, it was designed to ensure compatibility with existing IEEE 
488.1 devices. The concept used in expanding the standard was that the manner, in which 
controllers and instruments would function as talkers, would be precisely defined. This 
means that fully compatible IEEE 488.2 systems would be reliable and efficient. 
However, backward compatibility with IEEE 488.1 devices could be ensured by 
designing the standard so that IEEE-488.2 devices, when acting as listeners, would be 
able to accept a wide range of commands and data formats from IEEE 488.1 devices. 

������� %�&'
������
�(���)))�#������(���(����
�

The IEEE 488.2 standard sets out a number of requirements for a controller, including an 
exact set of IEEE 488.1 interface capabilities as follows: 

• Sensing the state and transitions of the SRQ line 
• Setting and detecting EOI 
• Pulsing the interface clear line for 100 microseconds 
• Setting/asserting the REN line 
• Timing out on any I/O transaction 



��������
��
���������
��������	������	������	�����	��	
���	�������������

������ �)))�#������(���(��
�&'����
�

One of the additional features that the IEEE 488.2 standard has over the IEEE 488.1 
standard is the definition of the exact messages which are sent by the controller, as well 
as the ordering of those messages if more than one message is sent. IEEE 488.2 defines 
fifteen required control sequences and four optional control sequences as shown in Table 
8.1.  These control sequences describe the exact state of the GPIB, how devices should 
respond to specific messages, and the ordering of command messages for each of the 
defined operations. 
 
 

��
��
*�
(�� +(���(��
�&'����� +(�*�
�����

��	
��� !‘��"�’��#$$�	
�� ��	
��#$$�	
� %�	
��#�&�

�����

������#���	
�
���� ��	
����"'� %�	
��#�&�

��	
��� !‘(�)��’�
���� ��	
�
����*&���� %�	
��#�&�

��	
���'�#���$�$������� ��	
� %�	
��#�&�

�����

������#���������
���� �����������"'� %�	
��#�&�

���������� !‘(�)��’�
���� �����������'#	���

$�������

%�	
��#�&�

�������������'#	���$������� �������� %�	
��#�&�

+")����,-�)�	�� ��	
��,-� %�	
��#�&�

+)����
��������	�.-��� .�������)���� %�	
��#�&�

+)����
��������	�)#��)������� �	�*)��)#��)��#	��#)�� %�	
��#�&�

+)����
����)���	���$#��������� �	�*)����$#��� %�	
��#�&�

+)����
��������	���$#���/��0�)#��)�

)##1#"��������

�����2��� %�	
��#�&�

+)����
�������#	�)#��)�)#�1#"�� ��	
���3� %�	
��#�&�

���
���������4������"��*&��� ���
�����"��*&��� %�	
��#�&�

��	
���#"'��5��"��#	���������67��8�

$�������

�������� %�	
��#�&�

7�����#	��#)��#��	#�0���
������ +�����#	��#)� 3'��#	�)�

-#	
"�����'���))�)�'#))� +��(#�$�'���))�)�'#))� 3'��#	�)�

-#	(��"���
�����’��'���))�)�'#))�
���'#	����

+���))�)�'#))��#	(��"��� 3'��#	�)�

.���*)��
�����’��'���))�)�'#))���'�*�)��&� +���))�)�'#))�
"	�#	(��"���

3'��#	�)�

Table 8.1 
IEEE 488 2 required and optional control sequences 

������ �)))�#�����*�(�(�(�
�

Protocols are high-level functions that combine a number of control sequences to perform 
common test functions, thereby reducing test program development time. The IEEE 488.2 
defines two mandatory protocols and six optional protocols, as shown in Table 8.2. 
 
 



������������	
��
������

 
,�-.(��� /���� +(�*�
�����

������ �������&���$� %�	
��#�&�

,� .�9�� ,�	
�
��������:"����	���������� 3'��#	�)�

����+3��� �����)�'#))��))�
������� %�	
��#�&�

+���-��� +�����#	��#)� 3'��#	�)�

��9;���-��� ��:"�����#	��#)� 3'��#	�)�

,� .��� � ,�	
�)����	���� 3'��#	�)�

����..� �����

����� 3'��#	�)�*"����:"�����

,� .��� �

�,���<�� ��)(!������&���$� 3'��#	�)�

Table 8.2 
IEEE 488.2 controller protocols 

The functions performed by each of the defined protocols are as follows: 
RESET Initializes the GPIB bus, clears and sets all devices to a 

known state. 
FINDRQS The controller senses the ‘FALSE’ to ‘TRUE’ transition 

of the SRQ line and then services the most critical 
devices first. 

ALLSPOLL Serial polls each device and returns the status byte of 
each device.  

PASSCTL Passes bus control to other devices. 
REQUESTCTL Requests bus control. 
FINDLSTN The controller issues this command with a particular 

listener’s address and monitors the NDAC handshake 
line to determine if a device exists at that address. 

SETADD Used in conjunction with FINDRQS sets a device 
address. 

TESTSYS The controller instructs each device to perform a self-
test and report back whether it has any problems or is 
OK. 

 
As an example of the usefulness of protocols, consider the serial polling of one or more 

devices on a GPIB system.  Multiple devices can asynchronously request service from the 
controller by asserting the service request (SRQ) line. It is the responsibility of the 
controller to determine which device(s) made the request by performing a poll of the 
known active devices. Serial polling of a particular device can be implemented with the 
IEEE 488.1 protocol.   
The following sequence of events would occur: 

• Controller sends the un-listen (UNL) command message, which disables all 
Listeners from listening. 

• Set the listen address of the controller. 
• The controller sends the command message containing the serial poll enable 

(SPE) command to the device. This command directs the device to return its 
serial poll status byte, by setting the IEEE 488.1 serial poll mode in the 
device. When the device is addressed to talk, it will return the serial poll status 
byte. 



��������
��
���������
��������	������	������	�����	��	
���	�������������

• The controller temporarily configures the required device as a talker by 
putting the talk address of the device onto the bus. 

• Controller reads a byte (status byte) from the device configured as a talker. 
• The controller sends the command message containing the serial poll disable 

(SPD) command to the device. This command resets the serial poll mode in 
the device. 

 
The mandatory protocol ALLSPOLL serial polls all devices in the GPIB, whose 

addresses are provided with the protocol (e.g. ALLSPOLL 1,2,3,4). The steps required to 
serial poll each device are carried out invisibly to the user. 

����#� ��!
���
�����������*�0
�
�
�
�

IEEE 488.2 defines a minimum set of IEEE 488.1 interface capabilities that a device must 
have. The device interface capabilities, (i.e. the functions that a device can perform) are 
represented by explicit codes that should be found below or near the interface connector 
of each device.  The minimum functions that a device must be able to perform are shown 
in Table 8.3. 
 

+�*�0
�
�-� +(��� +(������

�#"����0�	
�0�1�� �=�� ,"))���'�*�)��&�

����'�#��0�	
�0�1�� �=�� ,"))���'�*�)��&�

��)1��� �6��8��#���6��8�� ��������)1��>������)�'#))�#��"	��)1�

#	�%���

�����	��� �6��8
�#���6��8�� ;	)����	�#	�%���#��("))���'�*�)��&�

����������:"���� ���� ,"))���'�*�)��&�

.�������)���� .-�� ,"))���'�*�)��&�

��$#���)#��)� ����#������  #�#��("))���'�*�)��&�

+���))�)�'#))� ++��#��++��  #�#��("))���'�*�)��&�

.�������������� .���#��.���  #�#��("))���'�*�)��&�

-#	��#))��� �-��#��-��/��0�-�>�

-�>�-��#��-���

 #�#��("))���'�*�)��&�/��0���	
��(�

$������>�'���>����������#	��#)�

�)�������)��	���(���� ���#����� 3'�	��#))���#��#�����!������

Table 8.3 
A minimum set of device interface capabilities for IEEE 488.2 

For a complete description of what each code represents, and all other codes describing 
device functionality, the user should refer to the IEEE 488 standard or alternatively the 
specifications of a particular device. 

������ $���'
���*(��
����(����

One of the problems associated with the IEEE 488.1 was that status reporting from 
individual devices was unique, with each device reporting its status information using a 
different set of bits in the status byte. IEEE 488.2 solved this problem by defining a 
standard status-reporting model as shown in Figure 8.8. 



������������	
��
������

 

Figure 8.8 
IEEE 488.2 status reporting model 

This model builds upon the status byte definition of IEEE 488.1, which only had bit 6 
defined as the RQS (request service) bit. The RQS bit is set to indicate that a device is 
requesting service by asserting the service request (SRQ) line. A further two bits are 
defined, the event status bit ESB) and the message available (MAV) bit. Other bits are 
defined by the manufacturer. The ESB indicates that one of the standard events, as 
defined in the standard event status register, has occurred. Only the events for which the 
user has set the corresponding bit in the standard event status register will cause the ESB 
to be set in the status byte. The MAV bit is used to indicate if a message is available in 
the device’s output queue. 

Whether a device asserts the service request (SRQ) line when one of the bits in its 
status register becomes set, is enabled or disabled, using the service request enable 
register. If a bit is set by the user in this register, then the setting of the corresponding bit 
in the status register will cause the device to assert the SRQ line. 

����1�� +(��(���(������
���

IEEE 488.2 also designates a minimum set of standard commands that a device must 
have. These are not new bus command messages, but are new data messages common to 
all devices. Table 8.4 lists the mandatory IEEE 488.2 commands, indicating the command 
group to which each command belongs. 



��������
��
���������
��������	������	������	�����	��	
���	�������������

 
2���(�
�� ��('*� ��
��
*�
(��

?�. @� �&���$�
���� �
�	��(�����#	�:"��&�

?���� �	���	�)�#'�����#	�� ������

?���@� �	���	�)�#'�����#	�� ��)(!�����:"��&�

?3+-� �&	�0�#	�A���#	� 3'�����#	��#$')����

?3+-@� �&	�0�#	�A���#	� 3'�����#	��#$')����:"��&�

?2��� �&	�0�#	�A���#	� 2�����#��#$')����

?-��� ����"���	
����	�� -)��������"��

?���� ����"���	
����	�� ���	������"���	�*)��

?���@� ����"���	
����	�� ���	������"���	�*)��:"��&�

?���@� ����"���	
����	�� ���	������"�����������:"��&�

?���� ����"���	
����	�� ����������:"�����	�*)��

?���@� ����"���	
����	�� ����������:"�����	�*)��:"��&�

?����@� ����"���	
����	�� ���
�����"��*&���:"��&�

Table 8.4 
IEEE 488.2 commands 

The SCPI takes the common command set further by defining specific commands that 
each instrument class (i.e. multimeters, oscilloscopes, digital voltmeters, etc), from 
different manufacturers, must obey. 

8.9 Standard commands for programmable instruments (SCPI) 
A lack of standardization between the command sets for programming instruments 
developed by different manufacturers led to a group of manufacturers developing the 
SCPI specification. Using the IEEE 488.2 standard as a basis, SCPI defines a single 
comprehensive programming command set that can be used with any hardware link and 
different instruments. 

For example, the command ‘:MEAS:FREQ?’ or ‘:MEAS:VOLT?’ for reading of a 
frequency and voltage measurement respectively, would be applicable to any instrument 
capable of processing these parameters. The instrument could be a voltmeter, an 
oscilloscope, or a frequency counter. 

IEEE 488.1, IEEE 488.2, and SCPI instruments and controllers can be used in the same 
system, but the most easily programmed, flexible, fast, and interchangeable systems make 
use of IEEE 488.2 controllers and SCPI instruments. 

��3��� �)))�#������(��(���(�����
���&'
����0-�����$+���

As a minimum requirement for SCPI, the common and mandatory commands defined in 
the IEEE 488.2 standard and needed by all SCPI compatible instruments was defined in 
Table 8.4. This minimum command set does not handle device specific commands (i.e. 
:MEAS:FREQ?), but consists of program commands and status queries such as device 
reset, device self test, service request enable reporting, device identification, operation 
synchronization and standard event status enabling and reporting. 



������������	
��
������

��3��� $+�����&'
�����(�����
�

To build on the common command set defined in IEEE 488.2, SCPI also defines its own 
set of required common commands, as shown in Table 8.5. 

For example, the status reporting defined by IEEE 488.2 is expanded with the 
OPERation and QUEStionable status registers, for which there are commands for reading 
the contents of the EVENt arid CONDition registers, setting the ENABle mask, or 
reading the ENABle mask. 

The command set allowed by the introduction of the SYSTem parent command defines 
functions that perform general housekeeping duties such as setting the TIME or SECurity 
access. The subcommand query ERRor? requests the next entry from the error/event 
queue of the SCPI device. 
 

+(������ ��
��
*�
(��

B�<���$� -#))�����("	���#	��	#����)���
��#��	���"$�	��'��(#�$�	���

����B���#�@� ��:"������0��	�5���	��&�(�#$��0���	���"$�	���:"�"��

B����"�� -#	��#)���0���-+�!
�(�	�
�����"����'#���	�����"��"����

����B3+�����#	� ��)������0��#'�����#	����"��"���

��������CB�D� �E@� ���"�	���0���#	��	���#(��0�����	�����������

��������B-3 .���#	@� ���"�	���0���#	��	���#(��0���#	
���#	����������

��������B� ��)�@� ���
���0���	�*)��$��1�

����B9;����#	�*)�� ��)������0��:"����#	�*)�����"��"���

��������CB�D� �E@� ���"�	���0���#	��	���#(��0�����	�����������

��������B-3 .���#	@� ���"�	���0���#	��	���#(��0���#	
���#	����������

��������B� ��)�� ������0���	�*)��$��1�/0��0��))#/�����	����'#���	��

��������B� ��)�@� ���
���0���	�*)��$��1�

B+������ �	�*)����))���:"���
����	����'#���	��

Table 8.5 
SCPI required commands 

��3��� "���$+���*�(�����
����(�������(����

As a means of achieving compatibility and breaking commands up into groups, SCPI 
defined a model of a programmable instrument, as shown in Figure 8.9, which applies to 
all the different types of instrumentation. 

When using this model it should be noted that not all instruments have the functionality 
indicated; it is a generalized model of an instrument.  For example, an oscilloscope does 
not have the functionality defined by the signal generation block in the SCPI model, 
where as a function generator will have.  In addition, the function generator will probably 
not have the functionality described by the measurement function block. 



��������
��
���������
��������	������	������	�����	��	
���	�������������

 

Figure 8.9 
SCPI instrument model 

The functional components of the SCPI instrument model are described in the following 
sections: 

%���"��$�	��("	���#	�
The measurement function component is used to convert a signal into a preprocessed 
form.  It is divided into three distinct parts: 

INPut Performs signal conditioning, such as filtering, biasing 
and attenuation on the raw incoming signal. 

SENse Converts the conditioned input signal into a data format 
that can be manipulated by the user.  This function 
controls parameters such as range, resolution, gate time, 
and normal mode rejection. 

CALCulate Converts the data into a format that is more useful for a 
particular application, such as converting the data to 
engineering units. 

The measurement function described by the three functions above is specified by the 
signal parameters, and not by the instrument’s functionality. This usually provides the 
highest level of compatibility by allowing different instruments that make the same 
measurements to be interchanged without changing the SCPI command. 

���	�)���	�����#	�
The signal generation function converts internal data to real-world signals. It is also 
divided into three distinct parts: 

OUTput This signal block conditions the output signal by 
filtering, attenuation and biasing. 

SOURce Generates a signal based on specific characteristics and 
internal data, specifying such signal parameters as 
current, voltage, power and frequency. 

CALCulate This functional block converts the data from one set of 
engineering units to another and also takes into account 
abnormalities, which occur in the generation of the 
signal data. 

���	�)��#"��	��
The signal routing function controls the connection of a signal to the internal functions of 
a particular instrument. The TRIGger component synchronizes instrument options with 
external conditions, such as an analog or digital signal, internal instrument events 



������������	
��
������

involving the instrument's functionality or a software command. The MEMory 
component is used for internal storage of data; while the FORMat component converts 
the data from the instrument to a form suitable for transmission across a standard bus.  
The DISPlay component allows for display of the data on a screen. 

��3�#� $+����
������
�����(������
��'��'���

The SCPI instrument model defines the functional blocks for each of the main command 
categories.  Each of these main categories has a hierarchical command structure, referred 
to as a command tree, comprising sub-commands, parameters and options that provide 
the specific details of the function to be performed.  This is shown in Figure 8.10. 
 

 

Figure 8.10 
SCPI hierarchical command structure 

The SENSe partial command tree of Figure 8.11 contains sub-commands that program an 
instrument to control the conversion of a signal into the required internal data format. 
This data can be further manipulated by the user. 
 

 

Figure 8.11 
Partial command tree for SENSe command structure 

SENSe commands control parameters such as resolution and range. Therefore, to 
program a digital voltmeter to measure a voltage with autoranging, the command would 
be as follows: 
SENS:VOLT:RANG:AUTO:DIR:EITH 
Colons are used to separate each command and instruct the instrument’s command 
interpreter to move to next level down in the command tree hierarchy.  Note that 
command words are not broken by any spaces. 

Consider the programming of a digital voltmeter to measure voltage with specific upper 
and lower range values of 10 and 5 respectively.  The command would be as follows: 
SENS:VOLT:RANG:UPP10:LOW 5 

In this command, there are two sub-commands that are on the same level of the 
hierarchical command tree. When two commands are issued without changing levels, a 
semicolon is used to separate the commands. Also, note that commands and any related 
parameters must be separated by white space. 

 



9 

����������	
������
��

9.1 Ethernet and fieldbuses for data acquisition 
Ethernet, in the past, has been usually thought of as an office networking system. Now 
many manufacturers are using Ethernet and industrial fieldbuses as communication 
systems to interconnect data acquisition devices. This can take the form, among others, of 
connecting computers that are using plug-in data acquisition cards or data loggers that are 
networked together. Fieldbuses such as Profibus and Foundation Fieldbus are being used 
to interconnect devices that are doing data acquisition. To this end, it is necessary to 
define both Ethernet and industrial fieldbuses. 

The Ethernet network concept was developed by Xerox Corporation, at its Palo Alto 
Research Center (PARC), in the mid-seventies. It was based on the work done by re-
searchers at the University of Hawaii, where there were campus sites on the various 
islands. Its ALOHA network was set up using radio broadcasts to connect the various 
sites. This was colloquially known as their ‘Ethernet’ since it used the ‘ether’ as the 
transmission medium and created a network ‘net’ between the sites. The philosophy was 
quite straightforward.  Any station that wanted to broadcast to another station could do so 
immediately. The receiving stations then had a responsibility to acknowledge the mes-
sage; thus advising the original transmitting station of successful reception of the original 
message. This primitive system did not rely on any detection of collisions (two radio 
stations transmitting at the same time) but rather waited for an acknowledgement back 
within a predefined time. 

The initial system installed by Xerox was so successful that they soon applied the 
system to their other sites typically connecting office equipment to shared resources such 
as printers, and large computers acting as repositories of large databases. 

In 1980, the Ethernet Consortium consisting of Xerox, Digital Equipment Corporation 
and Intel (sometimes called the DIX consortium) issued a joint specification based on the 
Ethernet concepts and known as the Ethernet Blue Book 1 specification. This was later 
superseded by the Ethernet Blue Book 2 specification, which was offered to the IEEE as a 
standard. In 1983, the IEEE issued the 802-3 standard for carrier sense; multiple access; 



����������	
������
�  ��� 

collision detect LANs based on the Ethernet standard, which gave this networking 
standard even more credibility. 

As a result of this, there are three standards in existence. The first – often termed 
Ethernet Version 1 – can be disregarded as very little equipment based on this standard is 
still in use. Ethernet Version 2, or ‘Blue Book Ethernet’ is, however, still in use and there 
is a potential for incompatibility with the IEEE 802.3 standard. The differences between 
these two later standards are discussed in section 9.5. While these differences are minor, 
they are nonetheless significant. Despite the generic term ‘Ethernet’ being applied to all 
CSMA/CD networks, it should be reserved for the original DIX standard. This manual 
will continue with popular use and refer to all the LANs of this type as Ethernet, unless it 
is important to distinguish between them. 

Ethernet uses the CSMA/CD access method discussed in section 9.3. This gives a 
system, which can operate with little delay, if lightly loaded, but the access mechanism 
can fail completely, if too heavily loaded. Ethernet is widely used commercially, and the 
NICs are relatively cheap and produced in vast quantities. Because of its probabilistic 
access mechanism, there is no guarantee of message transfer and messages cannot be 
prioritized. It is becoming more widely used industrially despite these disadvantages.   

9.2 Physical layer 
802.3 standard defines a range of cable types that can be used for a network based on this 
standard. They include coaxial cable, twisted-pair cable and fiber optic cable. In addition, 
there are different signaling standards and transmission speeds that can be utilized. These 
include both baseband and broadband signaling, and speeds of 1 Mbps and 10 Mbps. The 
standard is continuing to evolve, and this manual will look at 100 Mbps CSMA/CD 
systems in the next chapter. 

The IEEE 802.3 standard documents (ISO 8802.3) support various cable media and 
transmission rates up to 10 Mb/s as follows: 

• 10BASE-2 
Thin wire coaxial cable (0.25 inch diameter), 10 Mbps, single cable bus 

• 10BASE-5 
Thick wire coaxial cable (0.5 inch diameter), 10 Mbps, single cable bus 

• 10BASE-T 
Unscreened twisted-pair cable (0.4 to 0.6 mm conductor diameter), 10 Mbps, 
twin cable bus 

• 10BASE-F 
Optical fiber cables, 10 Mbps, twin fiber bus 

• 1BASE-5 
Unscreened twisted-pair cables, 1 Mbps, twin cable bus 

• 10BROAD-36 
Cable television (CATV) type cable, 10 Mbps, broadband 

������ ����	
��	�	

�	�

This is a coaxial cable system and uses the original cable for Ethernet systems – 
generically called ‘Thicknet’. It is a coaxial cable, of 50 ohm characteristic impedance, 
and yellow or orange in color. The naming convention for 10Base5: means 10 Mbps; 
baseband signaling on a cable that will support 500-meter segment lengths. It is difficult 
to work with, and so cannot normally be taken to the node directly. Instead, it is laid in a 



�������������������	���������������������
��������������������������
� 

cabling tray etc and the transceiver electronics (medium attachment unit, MAU) is 
installed directly on the cable. From there an intermediate cable, known as an attachment 
unit interface (AUI) cable is used to connect to the network interconnection card (NIC). 
This cable, which can be a maximum of 50 meters long, compensates for the lack of 
flexibility of placement of the segment cable. The AUI cable consists of 5 individually 
shielded pairs – two each (control and data) for both transmitting and receiving, plus one 
for power.  

The MAU connection to the cable can be made by cutting the cable and inserting an N-
connector and a coaxial tee or more commonly by using a ‘bee-sting’ or a ‘vampire’ tap. 
The tee is a mechanical connection that clamps directly over the cable. Electrical 
connection is made via a probe that connects to the center conductor and sharp teeth, 
which physically puncture the cable sheath to connect to the braid. These hardware 
components are shown in Figure 9.1. 

 
 

 

Figure 9.1 
10Base5 hardware components  

The location of the connection is important to avoid multiple electrical reflections on 
the cable, and the Thicknet cable is marked every 2.5 meters with a black or brown ring 
to indicate where a tap should be placed. Fan out boxes can be used if there are a number 
of nodes for connection, allowing a single tap to feed each node, as though it was 
individually connected. The connection at either end of the AUI cable is made through a 
25 pin D-connector, with a slide latch, often called a DIX connector after the original 
consortium. 
 



����������	
������
�  ��� 

 

Figure 9.2 
AUI cable connectors  

There are certain requirements if this cable architecture is used in a network. These 
include: 

• Segments must be less than 500 meters in length to avoid signal attenuation 
problems 

• No more than 100 taps on each segment i.e. not every connection point can 
support a tap 

• Taps must be placed at integer multiples of 2.5 meters 
• The cable must be terminated with a 50 ohm terminator at each end 
• It must not be bent at a radius exceeding 25.4 cm or 10 inches 
• One end of the cable must be earthed 
 

The physical layout of a 10Base5 Ethernet segment is shown in Figure 9.3. 
 

 

Figure 9.3 
10Base5 Ethernet segment 

The Thicknet cable was extensively used as a backbone cable until recently (1995) but 
10BaseT and fiber are becoming more popular. Note that when a MAU (tap) and AUI 
cable is used, the on board transceiver on the NIC is not used. Rather, there is a 



�������������������	���������������������
��������������������������
� 

transceiver in the MAU and this is fed with power from the NIC via the AUI cable. Since 
the transceiver is remote from the NIC, the node needs to be aware that the termination 
can detect collisions if they occur. This confirmation is performed by a Signal Quality 
Error (SQE), or heartbeat test function, in the MAU. The SQE signal is sent from the 
MAU to the node on detecting a collision on the bus. However, on completion of every 
frame transmission by the MAU, the SQE signal is asserted to ensure that the circuitry 
remains active, and that collisions can be detected. You should be aware that not all 
components support SQE test and mixing those that do with those that don’t can cause 
problems. Specifically, if a NIC was to receive a SQE signal after a frame had been sent, 
and it was not expecting it, the NIC could think it was seeing a collision. In turn, as you 
will see later in the manual, the NIC will then transmit a jam signal. 

������� ����	
��	�	

�	�

The other type of coaxial cable Ethernet networks is 10Base2 and often referred to as 
‘Thinnet’ or sometimes ‘thinwire Ethernet’. It uses type RG-58 A/U or C/U with a         
50 Ω characteristic impedance and of 5 mm diameter. The cable is normally connected to 
the NICs in the nodes by means of a BNC T-piece connector, and represents a daisy chain 
approach to cabling. Connectivity requirements include: 

• Termination at each end with a 50 ohm terminator 
• The maximum length of a cable segment is 185 meters and NOT 200 meters! 
• No more than 30 transceivers can be connected to any one segment 
• There must be a minimum spacing of 0.5 meters between nodes 
• It may not be used as a link segment between two ‘Thicknet’ segments 
• The minimum bend radius is 5 cm 

 
The physical layout of a 10Base2 Ethernet segment is shown in Figure 9.4. 

 
 

 

Figure 9.4 
10Base2 Ethernet segment 



����������	
������
�  ��� 

The use of Thinnet cable was, and remains, very popular as a cheap and relatively easy 
way to set up a network. However, there are disadvantages with this approach. A cable 
fault can bring the whole system down very quickly. To avoid such a problem, the cable 
is often taken to wall connectors with a make-break connector incorporated. The 
connection to the node can then be made by ‘fly leads’ of the same cable type. It is 
important to take the length of these fly leads into consideration in any calculation on 
cable length! There is also provision for remote MAUs in this system, with AUI cables 
making the node connection, in a manner similar to the Thicknet connection. 

������ ����	
��

The 10BaseT standard for Ethernet networks uses AWG24 unshielded twisted pair (UTP) 
cable for connection to the node. The physical topology of the standard is a star, with 
nodes connected to a wiring hub, or concentrator. Concentrators can then be connected to 
a backbone cable that may be coax or fiber optic. The node cable can be category 3 or 
category 4, although you would be well advised to consider category 5 for all new 
installations. This will allow an upgrade path as higher speed networks become more 
common, and given the small proportion of cable cost to total cabling cost, will be a 
worthwhile investment. The node cable has a maximum length of 100 meters; consists of 
two pairs for receiving and transmitting and is connected via RJ45 plugs. The wiring hub 
can be considered as a local bus internally, and so the topology is still considered as a 
logical bus topology. Figure 9.5 shows schematically how the hub interconnects the 
10BaseT nodes. 
 

 

Figure 9.5 
Schematic 10BaseT system  

Collisions are detected by the NIC and so an input signal must be retransmitted by the 
hub on all output pairs. The electronics in the hub must ensure that the stronger re-
transmitted signal does not interfere with the weaker input signal. The effect is known as 
far end crosstalk (FEXT), and is handled by special adaptive crosstalk echo cancellation 
circuits 

The standard has become increasingly popular for new networks, although there are 
some disadvantages that should be recognized: 

• The cable is not very resistant to electrical noise, and may not be suitable for 
industrial environments. 

• While the cable is inexpensive, there is the additional cost of the associated 
wiring hubs to be considered. 

• The node cable is limited to 100 m. 



�������������������	���������������������
��������������������������
� 

Advantages of the system include: 
• Intelligent hubs are available that can determine which spurs from the hub 

receive information. This improves on the security of the network – a feature 
that has often been lacking in a broadcast, common media network such as 
Ethernet. 

• Flood wiring can be installed in a new building, providing many more wiring 
points than are initially needed, but giving greater flexibility for future 
expansion. When this is done, patch panels – or punch down blocks – are 
often installed for even greater flexibility. 

������� ����	
��

This standard, like the 10BaseT standard, is based on a star topology using wiring hubs. 
The actual standard had been delayed by development work in other areas, and was 
ratified in September 1993. It consists of three architectures. These are: 

• 10BaseFL 
This is the fiber link segment standard that is basically a 2-km upgrade to the 
existing fiber optic inter repeater link (FOIRL) standard. The original FOIRL 
as specified in the 802.3 standard was limited to a 1km fiber link between two 
repeaters, with a maximum length of 2.5 km if there are 5 segments in the 
link. Note that this is a link between two repeaters in a network, and cannot 
have any nodes connected to it. 

• 10BaseFP  
This is a star topology network based on the use of a passive fiber optic star 
coupler. Up to 33 ports are available per star, and each segment has a 
maximum length of 500 m. The passive hub is immune to external noise and 
is an excellent choice for noisy industrial environments. 

• 10BaseFB   
This is the fiber backbone link segment in which data is transmitted 
synchronously. It is designed only for connecting repeaters, and for repeaters 
to use this standard, they must include a built-in transceiver. This reduces the 
time taken to transfer a frame across the repeater hub. The maximum link 
length is 2 km, although up to 15 repeaters can be cascaded, giving greater 
flexibility in network design. 

������ ������	
�����������	
�����������������

This is the preferred approach to 100 Mbps transmission that uses the existing Ethernet 
MAC layer with various enhanced physical media dependent (PMD) layers to improve 
the speed. These are described in the IEEE 802.3u and 802.3y standards as follows: 

IEEE 802.3u defines three different versions based on the physical media:  
• 100Base-TX which uses two pairs of category 5 UTP or STP 
• 100Base-T4 which uses four pairs of wires of category 3,4 or 5 UTP 
• 100Base-FX which uses multimode or single-mode fiber optic cable 

IEEE 802.3y: 
• 100Base-T2, which uses two pairs of wires of category 3,4 or 5 UTP. 



����������	
������
�  ��� 

 

Figure 9.6  
Summary of 100Base-T standards 

This approach is possible because the original 802.3 specification defines the MAC layer 
independently of the various physical PMD layers it supports. As you will recall, the 
MAC layer defines the format of the Ethernet frame and defines the operation of the 
CSMA/CD access mechanism. The time dependent parameters are defined in the 802.3 
specification in terms of bit-time intervals and so are speed-independent. The 10 Mbps 
Ethernet inter-frame gap is actually defined as an absolute time interval of 9.60 
microseconds, equivalent to 96 bit times; while the 100 Mbps system reduces this by ten 
times to 960 nanoseconds. 

One of the limitations of the 100Base-T system is the size of the collision domain, 
which is 250 m. This is the maximum sized network in which collisions can be detected; 
being one tenth of the size of the maximum 10 Mbps network.  This limits the distance 
between our workstation and hub to 100 m, the same as for 10Base-T, but usually only 
one hub is allowed in a collision domain. This means that networks larger than 200 m 
must be logically connected together by store and forward type devices such as bridges, 
routers or switches. However, this is not a bad thing since it segregates the traffic within 
each collision domain, and hence reducing the number of collisions on the network. The 
use of bridges and routers for traffic segregation, in this manner, is often done on 
industrial CSMA/CD networks. 

The dominant 100Base-T system is 100Base-TX, which accounts for about 95% of all 
fast Ethernet shipments. The 100Base-T4 systems were developed to use four pairs of 
category 3 cable; however few users had the spare pairs available and T4 systems are not 
capable of full-duplex operation, so this system has not been widely used. The 100Base-
T2 system has not been marketed at this stage, however its underlying technology using 
digital signal processing (DSP) techniques is used for the 1000Base-T systems on two 
category 5 pairs. With category 3 cable diminishing in importance, it is not expected that 
the 100Base-T2 systems will become significant. 

Ethernet signals are encoded using the Manchester encoding scheme. This method 
allows a clock to be extracted at the receiver end to synchronize the transmission/ 
reception process. The encoding is performed by performing an ‘exclusive-or’ between a 
20 MHz clock signal and the data stream. In the resulting signal, a 0 is represented by a 
high to low change at the center of the bit cell, whilst a 1 is represented by a low to high 
change at the center of the bit cell. There may or may not be transitions at the beginning 



�������������������	���������������������
��������������������������
� 

of a cell as well, but these are ignored by the receiver. The transitions in every cell allow 
the clock to be extracted, and synchronized with the transmitter. 

 

 

Figure 9.7 
Manchester encoding 

The voltage swings were from –0.225 to –1.825 volts in the original Ethernet 
specification. In the 802.3 standard, voltages on coax cables are specified to swing 
between 0 and –2.05 volts with a rise and fall time of 25 ns at 10 Mbps. 

9.3 Medium access control 
Essentially, the method used is one of contention. As was described in the first section on 
this architecture, each node has a connection via a transceiver to the common bus. As a 
transceiver, it can both transmit and receive at the same time. Each node can be in any 
one of three states at any time. These states are: 

• Idle, or listen 
• Transmit 
• Contention 

 
In the idle state, the node merely listens to the bus, monitoring all traffic that passes. If 

a node then wishes to transmit information, it will defer while there is any activity on the 
bus, since this is the ‘carrier sense’ component of the architecture. At some stage, the bus 
will become silent, and the node, sensing this, will then commence its transmission. It is 
now in the transmit mode, and will both transmit and listen at the same time. This is 
because there is no guarantee that another node at some other point on the bus has not 
also started transmitting having recognized the absence of traffic. After a short delay as 
the two signals propagate towards each other on the cable, there will be a collision of 
signals. Quite obviously, the two transmissions cannot coexist on the common bus, since 



����������	
������
�  ��� 

there is no mechanism for the mixed analog signals to be ‘unscrambled’. The transceiver 
quickly detects this collision, since it is monitoring both its input and output and 
recognizes the difference. The node now goes into the third state of contention. The node 
will continue to transmit the jam signal for a short time, to ensure that the other 
transmitting node detects the contention, and then performs a back-off algorithm to 
determine when it should again attempt to transmit its waiting frames. 

When a frame is to be transmitted, the medium-access-control monitors the bus and 
defers to any passing traffic. After a period of 96 bit times, known as the inter-frame gap, 
to allow the passing frame to be received and processed by the destination node, the 
transmission process commences. Since there is a finite time for this transmission to 
propagate to the ends of the bus cable, and thus ensure that all nodes recognize that the 
medium is busy, the transceiver turns on a collision detect circuit whilst the transmission 
takes place. In fact, once a certain number of bits (576 bits in a 10 Mbps system) have 
been transmitted, provided that the network cable segment specifications have been 
complied with, the collision detection circuitry can be disabled. If a collision should take 
place after this, it will be the responsibility of higher protocols to request retransmission – 
a far slower process than the hardware collision detection process. Here is a good reason 
to comply with cable segment specifications! This initial ‘danger’ period is known as the 
collision window, and is effectively twice the time interval for the first bit of any 
transmission, to propagate to all parts of the network. The slot time for the network is 
then defined as the worst-case time delay that a node must wait, before it can reliably 
know that a collision has occurred. It is defined as: 
 
Slot time = 2 * (transmission path delay) + safety margin 
For a 10 Mbps system, the slot time is FIXED as 512 bits or 64 octets. 
 

The transceiver of each node is constantly monitoring the bus for a transmission signal. 
As soon as one is recognized, the NIC activates a carrier sense signal to indicate that 
transmissions cannot be made. The first bits of the MAC frame are a preamble and 
consist of 56 bits of 1010 etc. On recognizing these, the receiver synchronizes its clock, 
and converts the Manchester encoded signal back into binary form. The eighth octet is a 
start of frame delimiter, and this is used to indicate to the receiver that it should strip off 
the first eight octets and commence determining whether this frame is for its node by 
reading the destination address. If the address is recognized, the data is loaded into a 
frame buffer within the NIC. Further processing then takes place, including the 
calculation and comparison of the frame CRC with the transmitted CRC, checking that 
the frame contains an integral number of octets and is neither too short nor too long. 
Provided all is correct, the frame is passed to the LLC layer for further processing. 

Collisions are a normal part of a CSMA/CD network. The monitoring and detection of 
collisions is the method by which a node ensures unique access to the shared medium. It 
is only a problem when there are excessive collisions. This reduces the available 
bandwidth of the cable and slows the system down while re-transmission attempts occur. 
There are many reasons for excessive collisions and these will be investigated shortly. 
The principle of collision cause and detection is shown in the diagram below. 



�������������������	���������������������
��������������������������
� 

 

Figure 9.8  
CSMA/CD collisions  

Assume that both node 1 and node 2 are in listen mode and node 1 has frames queued 
to transmit. All previous traffic on the medium has ceased i.e. there is no carrier, and the 
inter-frame gap from the last transmission has timed out. Node 1 now commences to 
transmit its preamble signal, which immediately commences to propagate both left and 
right on the cable. At the left end, the transmission is absorbed by the termination 
resistance, but the signal continues to propagate to the right. However, the MAC sub-
layer in node 2 has also been given a frame to transmit from the LLC sub-layer, and since 
the node ‘sees’ a free cable, it too commences to transmit its preamble. Again, the signals 
propagate on to the cable, and some short time later, they ‘collide’. Almost immediately, 
node 2’s transceiver recognizes that the signals on the cable are corrupted, and the logic 
incorporated on the NIC asserts a collision detect signal. This causes node 2 to send a jam 
signal of 32 bits of random data, and then stop transmitting.  In fact, the standard allows 
any data to be sent as long as, by design, it is not the value of the CRC field of the frame. 
It appears that most nodes will send the next 32 bits of the data frame as a jam, since it is 
instantly available.  



����������	
������
�  ��� 

This jam signal continues to propagate along the cable, as a contention signal, since it is 
‘mixed’ with the signal still being transmitted from node 1. Eventually, node 1 recognizes 
the collision, and goes through the same jam process as node 2. You can see from this 
that the frame from node 1 must be at least twice the end-to-end propagation delay of the 
network, or else the collision detection will not work correctly. The jam signal from node 
1 will continue to propagate across the network until absorbed at the far end terminator, 
meaning that the system vulnerable period is three times the end to end propagation 
delay. 

After the jam sequence has been sent, the transmission is halted. The node then 
schedules a retransmission attempt after a random delay controlled by a process known as 
the truncated binary exponential back-off algorithm. The length of the delay is chosen so 
that it is a compromise between reducing the probability of another collision and delaying 
the retransmission for an unacceptable length of time. The delay is always an integer 
multiple of the slot time. In the first attempt, the node will choose, at random, either 1 or 
0 slot-times delay. If another collision occurs, the delay will be chosen at random from 0, 
1, 2 or 3 slot-times, thus reducing the probability that a further collision will occur. This 
process can continue for up to 10 attempts, with a doubling of the range of slot times 
available for the node to delay transmission at each attempt. After ten attempts, the node 
will attempt 6 more retries, but the slot times available for the delay period will remain as 
they were at the tenth attempt. After 16 attempts, it is likely that there is a problem on the 
network and the node will cease attempting to retransmit. 

9.4 MAC frame format  
The basic frame format for an 802.3 network is shown below. There are eight fields in 
each frame, and they will be described in detail. 
 
 

 

Figure 9.9 
MAC frame format 



�������������������	���������������������
��������������������������
� 

• Preamble 
This field consists of 7 octets of the data pattern 10101010. It is used by the 
receiver to synchronize its clock to the transmitter.  

• Start frame delimiter 
This single octet field consists of the data 10101011. It enables the receiver to 
recognize the commencement of the address fields. 

• Source and destination address 
These are the physical addresses of both the source and destination nodes. The 
fields can be 2 or 6 octets long, although the six-octet standard is the most 
common. The six-octet field is split into two three-octet blocks. The first three 
octets describe the block number to which all NICs of this type belong. This 
number is the license number and all cards made by this company have the 
same number. The second block refers to the device identifier, and each card 
will have a unique address under the terms of the license to manufacture. This 
means there are 248 unique addresses for Ethernet cards. 

There are three addressing modes that are available. These are: 
1. Broadcast – the destination address is set to all 1s or FFFFFFFFFFFF. 
2. Multicast – the first bit of the destination address is set to a 1. It provides 

group restricted communications. 
3. Individual, or point to point – first bit of the address set to 0, and the rest 

set according to the target destination node. 
• Length 

This is defined as a two-octet field that contains the length of the data field. 
This is necessary since there is no end delimiter in the frame. 

• Information 
This is defined as the information that has been handed down from the LLC 
sub-layer.  

• Pad 
Since there is a minimum length of frame of 64 octets (512 bits or 576 bits if 
the preamble is included) that must be transmitted to ensure that the collision 
mechanism works, the pad field will pad out any frame that does not meet this 
minimum specification. This pad, if incorporated, is normally random data. 
The CRC is calculated over the data in the pad field. Once the CRC checks 
OK, the receiving node discards the pad data, which it recognizes by the value 
in the length field. 

• FCS 
A 32-bit CRC value that is computed in hardware at the transmitter and 
appended to the frame. It is the same algorithm used in the 802.4 and 802.5 
standard. 

9.5 Difference between 802.3 and Ethernet 
As has already been discussed, there is a difference between an 802.3 network and a Blue 
Book Ethernet network. These differences are primarily in the frame structure and are 
tabulated below. 
 
 
 



����������	
������
�  ��� 

�������

����� �
�
� 

� 

�����

�������������������������� ���!"#$�

% &�����'�

(�������������&������������

)���&��������&����&����� ���� ��� )���&���������

*����� �+�������� , ���� ������-�����

.	-�


����&� , � ����%�*���

���'������%�����
&���������/*� ��&������%�����
&���0 ���������������

�/*�

�������% ���� �������%��
�� / ������������ �� '��������� �������,���

�����'����� ������������� �+����, '��

�1��'���&�������������0��+�


�����
������, '��

�1��'��������&������� ��,��� ����2��

Table 9.1  
Differences between IEEE 802.3 and Blue Book Ethernet (V2) 

The significant difference in the frame is the length-field in 802.3 vs the higher protocol 
field in Ethernet. Since an 802.3 frame cannot be longer than 1500 bytes, the values in the 
protocol type field of the Ethernet frame commences at 1500. This allows protocol 
analyzers to recognize one type of frame vs the other. 

9.6 Reducing collisions 
The main reasons for collision rates on an Ethernet network are: 

• The number of packets per second 
• The signal propagation delay between transmitting nodes 
• The number of stations initiating packets 
• The bandwidth utilization 

A few suggestions on reducing collisions in an Ethernet network are: 
• Keep all cables as short as possible 
• Keep all high activity sources and their destinations as close as possible. 

Possibly isolate these nodes from the main network backbone with 
bridges/routers to reduce backbone traffic 

• Use buffered repeaters rather than bit repeaters 
• Check for unnecessary broadcast packets which are aimed at non existent 

nodes 
• Remember that the monitoring equipment to check out network traffic can 

contribute to the traffic (and the collision rate) 

9.7 Ethernet design rules 
The following design rules on length of cable segment, node placement and hardware 
usage should be strictly observed. 

��!��� "
 #
���$�
�
�%�&'
�	
#�
 
�

It is important to maintain the overall Ethernet requirements as far as length of the cable 
is concerned.  Each segment has a particular maximum length allowable.  For example, 
10BASE-2 allows 200 m maximum length.  The recommended maximum length is 80% 



�������������������	���������������������
��������������������������
� 

of this figure.  Some manufacturers advise that you can disregard this limit with their 
equipment.  This can be a risky strategy and should be carefully considered. 
 

(�	

�� )�*+�,�� -
%���
 .
.�

��)����� ���
� ���
�

��)����� ���
� ���
�

��)���"� ���
� ��
�

�)����� ���
� ���
�

Table 9.2 
 

Cable segments need not be made from a single homogenous length of cable, and may 
comprise of multiple lengths joined by coaxial connectors (two male plugs and a 
connector barrel). Although ThickNet (10BASE-5) and ThinNet (10BASE-2) cables have 
the same nominal 50 ohm impedance they can only be mixed within the same 10BASE-2 
cable segment to achieve greater segment length. 

To achieve maximum performance on 10BASE-5 cable segments, it is preferable that 
the total segment be made from one length of cable or from sections off the same drum of 
cable. If multiple sections of cable from different manufacturers are used, then these 
should be standard lengths of 23.4 m, 70.2 m, or 117 m (± 0.5 m), which are odd multi-
ples of 23.4 m (half wavelength in the cable at 5 MHz). These lengths ensure that 
reflections from the cable-to-cable impedance-discontinuities are unlikely to be added in 
phases. Using these lengths exclusively, a mix of cable sections should be able to make 
up the full 500 m segment length. 

If the cable is from different manufacturers and one suspects potential mismatch 
problems, then one should check that signal reflections due to impedance mismatches do 
not exceed 7% of the incident wave. 

��!��� )�*+�,��
�� 	%
+/
��%�&'
�'
 #
��

In 10BASE-5 systems the maximum length, of transceiver cables, is 50 m but it should be 
noted that this applies to specified IEEE 802.3 compliant cables only. Other AUI cables 
using ribbon or office grade cables can only be used for short distances (less than 12.5 m) 
so check the manufacturer’s specifications for these! 

��!��� ��.
�0'�%
�
 
��,'
	�

Connection of the transceiver media access units (MAU) to the cable causes signal 
reflections due to their bridging impedance.  Placement of the MAUs must therefore, be 
controlled to ensure that reflections from them do not significantly add in phases. 

In 10BASE-5 systems the MAUs are spaced at 2.5 m multiples, coinciding with the 
cable markings. 

In 10BASE-2 systems, the minimum MAU spacing is 0.5 m. 

��!��� )�*+�,��
�� 	�+		+� �0�
��

The maximum transmission path is made of five segments connected by four repeaters.  
The total number of segments can be made up of a maximum of three coax segments 
containing station nodes and two link segments, having no intermediate nodes.  This is 
summarized as the 5-4-3-2 rule. 



����������	
������
�  ��� 

 
�����
�����

������������

��'��3����
�����

��� �+����
�����

�

�

(4��������

�����
�����

������������

��� �+����
�����

��'��3����
�����

Table 9.3  
5-4-3-2 rule 

It is important to verify that the above transmission rules are met by all paths between 
any two nodes on the network. 

 
 

 

Figure 9.10 
Maximum transmission path 

Note that the maximum sized network, of four repeaters, supported by IEEE 802.3, can 
be susceptible to timing problems. The maximum configuration is limited by propagation 
delay. 

Note that 10BASE-2 segments should not be used to link 10BASE-5 segments. 

��!��� )�*+�,�� 

�����	+1
�

•  10BASE-5 = 2800 m node to node (5 × 500 m segments + 4 
                                     repeater cables + 2 AUI) 

• 10BASE-2 = 925 m node to node (5 × 185 m segments) 
• 10BASE-T = 100 m node to hub 

��!�2� -
0
�

���,'
	�

Repeaters are connected to transceivers that count as one node on the segments. Special 
transceivers are used to connect repeaters and these do not implement the signal quality 
error test (SQE). 

Fiber optic repeaters are available giving up to 3000 m links at 10 Mbps. Check the 
vendor’s specifications for adherence with IEEE 802.3 repeater-performance and 
compliance with the fiber optic inter repeater link (FOIRL) standard. 



�������������������	���������������������
��������������������������
� 

��!�!� 3�&'
�	�	

��#��, .+ #�

Grounding has safety and noise connotations. 8802.3 states that the shield conductor of 
each coaxial cable shall make electrical contact with an effective earth reference at one 
point only. 

The single point earth reference for an Ethernet system is usually located at one of the 
terminators. Most terminators for Ethernet have a screw terminal to which a ground lug 
can be attached using a braided cable preferably to ensure good earthing. 

Ensure that all other splices, taps, or terminators are jacketed so that no contact can be 
made with any metal objects. Insulating boots or sleeves should be used on all inline 
coaxial connectors to avoid unintended earth contacts. 

9.8 Fieldbuses 
There are currently several hybrid analogue and digital standards available for 
communication between field devices and also between field devices and a master 
system. But only a fully compatible digital communication standard will provide the 
maximum benefits to end users and one such standard, currently being proposed, is 
Foundation FieldBus 

It would be helpful to ask, why is there considerable effort, time and money being 
invested in searching for a ‘perfect’ digital communication network? Why are there 
several approaches and not just one unified effort? Aren’t there enough standards and 
what is wrong with the one’s we have? 

The current approach to cabling of a typical control system is shown in Figure 9.10. 
Note that each instrument and actuator is connected back to the instrument room (to a 
controller) with an individual pair of wires. 

The strategy espoused today is to replace this with a communication cable, which 
connects all the instruments and actuators together, and has several significant advantages 
listed below. Each instrument and actuator now becomes an ‘intelligent device’. An 
intelligent device can be considered a computer-controlled device that takes analog data 
(e.g. flow meter), performs an operation on it (e.g. square root extraction), and sends this 
up a communication network to another device(s), which requires this data. Similarly, an 
intelligent actuator can control a valve to a specific position with a data value sent down 
the communications network from another device. 

The answer then lies in the potential benefits, and to a lesser degree, in the realization 
that the older standards were developed for specific reasons that may not be applicable to 
the demands placed on present day communications systems. 

)���% ���

 There are real benefits to be gained from emerging networks, including: 
• Greatly reduced wiring costs 
• Reduced installation and start-up time 
• Improved on-line monitoring and diagnostics 
• Easier change-out and expansion of devices 
• Improved local intelligence in the devices 
• Improved interoperability between manufacturers 



����������	
������
�  ��� 

 

Figure 9.11 
Current approach to cabling of a typical control system 

 

 

Figure 9.12 
Fieldbus approach to cabling of a typical control system 



�������������������	���������������������
��������������������������
� 

* %%�����������
��

Just as with any technology, each of the different approaches being undertaken has 
benefits and drawbacks. It would at first seem that a single digital bus system would be 
beneficial to all users, but this is not the case. Very simple field devices (proximity 
switches, limit switches, and basic actuators), for example, only require a few bits of 
digital information to communicate ‘off or on’ states, and are usually associated with real 
time control applications where update times of a few milliseconds are required. The 
associated electronics necessary to communicate with these systems can be simple, 
compact and inexpensive enough to be integrated in the device itself.  

Alternatively, complicated devices like PLCs, operator stations (sometimes referred to 
as man-machine-interfaces or MMIs) and DCSs (distributed control systems), require 
multi-byte length messages (up to 256 bytes in some systems) and may only require 
update times of 10–100ms depending on the application. The associated electronics are 
more expensive and require larger packaging that restricts the integration of these systems 
into very small devices. 

The solution is to select the digital communication network that is best suited to the 
application, and integrate information up through the higher speed networks as required. 
Toward this end, several approaches in digital networks have been developed over the 
last few years, each with a different target application, speed, and technology. 

These different approaches are being generically referred to as device networks or 
fieldbuses and are typically categorized by the length of the ‘message’ required by the 
devices to adequately convey information to the host or network.  

This method of categorization allows these networks to be placed in one of the 
following three network oriented classes: 

• Bit (sensor) 
• Byte (device) 
• Message (field) 
 

For example, the bit-oriented systems are used with simple binary type devices such as 
proximity sensors, contact closures, (pressure switches, float switches, etc), simple 
pushbutton stations, and pneumatic actuators. These types of networks are also known as 
‘sensor bus’ networks due to the nature of the devices (sensors and actuators) typically 
used. Excellent examples of this type of system are ASI (actuator sensor interface). 

Byte oriented systems are used in much broader applications such as motor starters, 
bar-code readers, temperature and pressure transmitters, chromatographs and variable-
speed drives, due to their larger addressing capability and the larger information content 
of the several byte length message format. These networks are also referred to as ‘device 
bus’ systems or networks. An excellent example of this approach is CANBus or 
DeviceNet. 

Message oriented systems, which are those systems containing over 16 bytes per 
message, are finding application in interconnecting more intelligent systems like PCs, 
PLCs, operator terminals, and engineering workstations where uploading and down-
loading system or device configurations are required, or in linking the above-mentioned 
networks together. These systems represent the higher end of the new pure digital 
networks for industrial and automation environments and are referred to in general as 
‘FieldBus’ systems or networks. Examples of these systems are Interbus-S, Profibus and 
Foundation Fieldbus. 

 



10 

���������	
���
�	����
�
�������

10.1 Introduction 
In September 23, 1998 Microsoft, Intel, Compaq, and NEC developed Revision 1.1 of the 
universal serial bus. The objective was to standardize the input/output connections on the 
IBM PC for devices like printers, mice, keyboards and speakers. Data acquisition (DAQ) 
devices were not envisioned to be connected to the USB system. But that does not mean 
that the USB cannot be used for DAQ. In many ways, the USB is well suited for DAQ 
systems in the laboratory or other small-scale systems.  

Small-scale DAQ systems have traditionally suffered from the need of an easy to use 
and standardized bus system for connecting smart DAQ devices. The nearest thing was 
the IEEE 488 GPIB system. The GPIB system is expensive and uses very old technology. 
There is need for an easy-to-operate, inexpensive, and standardized bus system to connect 
small-scale DAQ devices. The USB can fill those needs. With its plug and play ability, it 
is extremely easy to implement and use, and it is now standard on all IBM compatible 
PCs. Although it is not in any way as cheap as say an RS 232 connection, it is affordable.  

The USB is limited by its very nature, for its application, to DAQ systems. The biggest 
problem is the maximum cable distance. The low speed version is limited to 3 meters and 
the high-speed version is limited to 5 meters in total cable length. This requirement 
reduces the ability of USB to be used in a large, factory or plant, environment. Typically 
in these industries, DAQ systems need distances up to 1 kilometer. Due to the timing 
requirements of the USB, the length of the cable cannot be increased with repeaters. This 
limits the use of the USB to laboratories and or bench top systems.   

10.2 USB – overall structure 
The USB is a master/slave, half-duplex, timed communication bus system designed to 
connect close peripherals and hubs to an IBM compatible PC. It runs at either 1.5 Mbps 
(low speed) or 12 Mbps (high speed). The PC’s software program using device drivers 
create packets of information that are going to be sent to devices connected on the USB 
bus. The USB drivers in the computer allocate a certain time within a frame for the 



���������������	����
����
������������
���������������������������
���
 

information. The packet is then placed in this 1 ms frame that can contain many packets. 
One frame might contain information for many devices or may contain information for 
only one device. The frame is then sent to the physical layer via USB drivers and then on 
to the bus.  

The device receives its part of the packet and if necessary formulates a response. It then 
places this response on the bus. The USB drivers in the PC hear the response on the bus 
and verify that the frame is correctly using CRC. If the CRC indicates that the frame is 
correct, the software in the PC accepts the response.  

The devices connected to the USB bus can also be powered off the bus cable. Devices 
can use no more than 500 mA. This works well for small-scale DAQ devices; larger DAQ 
devices usually use external power supplies. Both power and communications are on the 
same cable and connector. 

There are many parts in the USB system that make the communication possible. These 
include: 

• Host hubs  
• External hubs  
• Type A connector 
• Type B connector 
• Low speed cables  
• High speed cables 
• USB devices  
• Host hub controller hardware and driver  
• USB software driver 
• Device drivers 

������� ����	�
��

The USB uses a pyramid shaped topology with everything starting at the host hub. The 
host hub usually consists of two USB ports on the back of the PC. These ports are 
basically in parallel with each other. Each port is a four-pin socket with two pins reserved 
for power and two for communications. The cables from eternal hubs or USB devices are 
plugged into host hub ports. One or both of the ports can be used. It doesn’t matter which 
one is used if only one connection is being made. If the external device or hub has a 
removable cable then a type ‘A to type B’ cable is used to make the connection. The A 
plug goes into the back of a PC (host hub) and the B plug goes into the device or external 
hub. If the external hub or device has an in-built cable then the A plug is plugged into the 
host hub port. The socket on the host hub is keyed so the plug will only go in one way. B 
plugs will not go into A sockets and vice-versa. 
 

 

Figure 10.1 
USB topology 



����������
���
��������
������������

Cable lengths are very important (and short) for the USB system. All cables, even if 
they come out of repeater hubs, must be counted in the total length of the cables.  

������� ��
�����
�

The controller chips for the host hub usually reside on the motherboard inside the PC, 
(although the hub could be a PCB in a PCI slot). The host controller does the parallel to 
serial and serial to parallel conversion from the PCI bus to the USB connectors. 
Sometimes a pre-processor is used to improve efficiency of the USB system. This host 
controller and connector combination is called the root hub or host hub. The host Hubs’ 
function is to pass the information to and from the PCI bus to the data lines (+D and –D) 
on the USB socket. The host controller can control the speed at which the USB operates. 
It also connects power lines (+5 V and ground) to a USB device via the USB cable. The 
external USB device may be another USB hub or a USB type device like a printer.  
 

 

Figure 10.2 
Host hub block diagram 

The root hub has complete control over the USB ports. This control would include: 
• Initialization and configuration 
• Enabling and disabling the ports 
• Recognizing the speed of devices 
• Recognizing that a device has been connected 
• Getting information from the application software 
• Creating a packet and then frame 
• Sending the information on to the bus 
• Waiting and recognizing a response 
• Error correction 
• Recognizing that a device has been disconnected  
• Using the port as a repeater 



���������������	����
����
������������
���������������������������
���
 

������� �������������
�����������������

There are two types of connectors, type A and type B. The reason there are two types is 
that some devices have built in cables while others have removable cables. If the cables 
were the same it would be possible to connect a host hub port to another host hub port. 
Because of the polarity of the connectors, the +5 volts would be connected to ground. To 
keep this from happening the hub’s output ports use type A connectors and the device 
input ports use type B. This means that it is impossible to connect one hub port to another 
hub port. On an external hub, the input to the hub is a type B connector unless the cable 
on the hub is permanently connected (no connector). 
 

 

Figure 10.3 
USB connectors 

������� ��� 
��������	�
������!
� 
��������	�
�

The USB standard states that the USB will run at either 1.5 Mbps (slow speed) or          
12 Mbps (fast speed). The USB must have low-speed cables and high-speed cables. This 
is due to the impedance difference caused by the different frequencies of data transfer. 
Low speed cables use untwisted and unshielded. The data pair is 28 AWG and the power 
pair is 20–28 AWG. The low-speed cable is used on devices like keyboards and mice.  
The maximum distance for low-speed cabling is 3 meters. High-speed cables are twisted 
and shielded. The data pair is 28 AWG and the power pair is 20–28 AWG. The maximum 
propagation delay must be less than 30 ns. The maximum distance for high speed USB is 
5 meters.   

�����"� #$�����	����
�

External hubs are used to increase the amount of devices connected to the system. 
Usually they have four USB output ports and either one type B input connector or a 
dedicated cable. This cable has a type A plug on it. It is usually connected to a host hub, 
but could also be connected to the output socket (type A) of another external hub. Even 



����������
���
��������
������������

though the external hub is a repeater it cannot extend the overall length of the system. 
This is because of the timing requirements of the USB standard.  

The external hub is an intelligent device that can control communication lines and 
power lines on its USB ports. It is a bi-directional repeater for information coming from 
the host hub and from USB devices. It talks to and even acts like an external USB device 
to the host hub. It plays an integral part in the configuration of devices at startup. There is 
no physical limit to the number of hubs.  

�����%� &'����(!��
�

The USB system supports every peripheral that can be currently connected to a PC. It has 
also been adapted to devices that are not usually considered peripherals. This would 
include data acquisition devices such as digital I/O modules and analog input and output 
modules. All USB devices must be intelligent devices. Smart devices obviously cost more 
than the old dumb RS-232 and RS-485 connected devices. With this cost the user gets 
more functions, ease of use and the ability to connect more devices to the PC. With the 
old non-USB system the computer was limited to a few devices. The USB system allows 
127 devices to be connected to the PC at the same time. There are two types of USB 
devices, low-speed and high-speed.  

����
�����������
�

Low-speed devices are not only limited in their speed but also in features. These devices 
could be keyboards, mice and digital joysticks. Since these devices put out small amounts 
of information they are polled less and are slower than other devices. When the USB bus 
is being accessed by high-speed devices, the low-speed device communication is 
disabled. Turning off the low-speed device ports at the root or external hubs, disables the 
low-speed devices. The hubs re-enable the low-speed ports after receiving a special 
preamble packet.  

�� ��
�����������
�

High-speed devices like printers, CD-ROMs and speakers need the speed of the 12 Mbps 
bus, to transfer the large amount of data required for these devices. All high-speed 
devices see all traffic on the bus. They are never disabled like the low-speed ones. When 
a device like a microphone is ‘connected’ to the speakers, most of the traffic, and 
therefore packets, will be used by the audio system. Other traffic like keyboard and 
mouse functions will have to wait. The host hub controller driver decides who has to wait 
and how long. 

�����)� ��
������������		������������������!(����

The host hub controller hardware and software drivers, control all transactions. The host 
hub controller hardware does the physical connections from the PCI bus to the USB 
connectors. It enables and initializes the host ports one at a time and determines the speed 
and direction of data transfer on both host ports. The host controller in conjunction with 
the host hub software driver determines the frame contents, prioritization of the devices, 
and how many frames are needed for a particular transfer.        



��!������������	����
����
������������
���������������������������
���
 

HOST PERIPHERAL

Client Software
Manages Interface

Function
A Collection of Interface

USB System Software
Manages Devices

USB Logical Device
A Collection of Endpoints

USB Bus Interface
Host Controller/SIE

USB Bus Interface
Peripheral Controller/SIE

USB Port USB Port

Logical
Communication Flow

Logical
Communication Flow

Figure 10.4 
Host hub controller diagram 

�����*� &'��
�+��������!(���

The USB software driver handles the interface between the USB devices, the device 
drivers and the host hub driver. When it receives a request from a device driver in the PC 
to access a certain device, it organizes the request with other device requests from the 
application software, in the PC. It works with the host hub controller driver to prioritize 
packets, before they are loaded into a frame. The USB software driver gets information 
from the USB devices during device configuration. It uses this information to tell the host 
hub controller how to communicate to the device. 

�����,� -�(!�����!(��
�

Each USB device must have a device driver loaded into the PC. This device driver is a 
software interface between the external USB device and the application software, the 
USB software driver, and the host hub controller driver. It has information about that 
particular device’s needs for the other drivers. This information is used to determine 
things like the type, speed (although that information can be determined physically by the 
hub ports), priority, function of the device, and the size of the packet needed for data 
transfer. 

�������� .�//��!���!���+	���

As mentioned before, the USB system is a master/slave, half duplex, timed 
communication bus system, designed to connect peripherals and external hubs. This 
means that the peripherals cannot initiate a communication on the USB bus. The master 
or host hub has complete control over the transaction. It initiates all communications with 
hubs and devices. The USB is timed because all frames are sent within a 1 ms time slot. 
More than one device can have a packet of information inside that 1 ms frame. The host 
hub driver, in conjunction with the USB software driver, determines the size of the 
packet, and how much time each device gets in one frame. 



����������
���
��������
������������

If the application’s software wants to send or receive some information from a device, it 
initiates a transfer via the device driver. This device driver is supplied by either the 
manufacture of the device, or comes with the operating system. The USB driver software 
then takes this request and places it in a memory location with other requests from other 
device drivers. Working together, the USB driver, host hub driver and the host hub 
controller place the request, data and packets from the device drivers into a 1 ms wide 
frame. The host controller then transfers the data serially to the host hub ports. Since all 
the devices are in parallel on the USB bus, all of the devices hear the information, (except 
low-speed devices, unless it is a low-speed transfer. Low-speed devices are turned off 
when they are not being polled). The host then waits for a response (if necessary). The 
remote USB device then responds with an appropriate packet of information. If a device 
does not see any bus activity for 3 ms then it will go into the suspend mode. 
 

 

Figure 10.5 
Example of a USB packet 

There are four types of IN packets (reading information from a device) and three types 
of OUT packets (sending information out to a device). Certain devices like mice and 
keyboards need to be polled (IN packets), but not too often. The USB software driver 
knows about these devices and schedules a regular poll for them. Included in the response 
are three levels of error correction. This type of transfer is very reliable. These peripherals 
are usually low-speed devices and therefore need a distinct low-speed packet to enable 
them. This packet is called a preamble packet. The preamble packet is sent out before 
each poll. The low-speed devices are disabled until they receive this preamble packet. 
Once they are enabled, they hear the poll and respond. Only one device can be polled at a 
time and therefore only one device will respond. USB has no provisions for multiple 
responses from devices.  

On the other hand there are devices that need constant attention but polling is not 
possible. These would be devices like microphones (IN packets), speakers (OUT packets) 
and CD-ROMs (both types of packets IN and OUT). The transfer rate is very important to 
these devices. Obviously they would use the high-speed transfer rate. They would also 
use a large portion of the frame (up to 90%). The receiving device does NOT respond to 
the data transfer. This transfer is a one-way data transfer or ‘simplex’. This means that 
error correction is effectively turned off for these types of transfers.  

10.3 The physical layer 
The physical layer of the universal serial bus is based on a differential +/– 3 V DC 
communication system. It is in some ways very similar to the RS-485 voltage standard. 
Unfortunately it does not have the range of 485. This is not because of the type of wire 
used or because of the USB voltage standard itself. It is because of the timing 
requirements of the USB protocol. In order to fit in all of the things the peripherals do on 
a USB bus, it was necessary to put very strict time requirements on the USB. The USB 
physical standard has a lot of benefits to the user. It is fast, 12 MHz. It is very resistant to 
noise and is very reliable, as long as the user follows the cabling rules. With standardized 
cables and connectors it is very hard for the user to get things wrong when cabling the 
USB system.  



��"������������	����
����
������������
���������������������������
���
 

 

Figure 10.6 
USB connector pins 

There is a story that one day Bill Gates was watching some installers put in his new 
computer. When he saw all the wires coming out of the back of the computer he called 
the CEO at Intel and said, ‘We have to get rid of this mess of cables and connectors’. And 
as they say, the rest is history. 

������� .��������
�

The plugs and sockets on the USB have two wires for data communication and two wires 
for power. Using bus-powered devices is optional. The pins on the plug are not the same 
length. The power pins are 7.41 mm long and the communication pins are 6.41mm long. 
This means that if a cable is plugged in ‘hot’ the power will be applied to the device 
before the communications lines. More importantly it also means that when a cable is 
unplugged the data communications lines will be disconnected before the power. This 
would reduce the possibility of back EMF voltages damaging the equipment. There are 
two types of connectors for the USB, type A and type B.  

Type A connector is a flat semi-rectangular keyed connector that is used on the host 
ports, external hubs and devices. The type B keyed connector is half-round and smaller 
than the type A connector. Note that both type A and B plugs have the USB symbol on 
the top of the connector. This is for orientation purposes.  

The hubs and devices all have female sockets, while the cables have a type A male 
plug, on one end, and a type B on the other end. This is because if there were a type A on 
both ends it would be possible to connect two host hub sockets or external hub sockets 
together. Cables that are not removable from the device or external hub, have only the 
type A plug on one end. 

������� .��	�
�

The cables for the USB are specified as either low- or high-speed cables. Both the low- 
and high-speed cables can use type A connectors, but only a high-speed device can use 
type B connectors. Detachable cables are therefore always high-speed cables.  

Due to that fact that the impedance of a cable is determined in part by the frequency of 
the signal, the two speeds need two different cables. External hubs are always high-speed 
units, but they will accept low- and high-speed cables. Low-speed devices like keyboards 



����������
���
��������
����������#�

will only connect to other low-speed devices using low-speed cables. The ports on the 
hub can detect the speed of the device on the other end. If the D+ line is pulled high  
(+3.0 V DC to +3.6 V DC) then the device is considered high-speed. If the D– line is 
pulled high then the device is considered low-speed.  

The low-speed (1.5 Mbps) cable uses unshielded, and untwisted data cables. The 
communication pair is 28 AWG gauge, but due to the lack of shielding and twisting, the 
overall diameter of the cable is smaller than that of a high-speed cable. The maximum 
distance for the low-speed cable is 3 meters. This includes all host hub ports to external 
hub, as well as the external hub to device cables. Usually on data communication systems 
slower data speeds mean longer distances. In this case, the cable is unprotected against 
noise, and because of the FCC restrictions on 1 to 16 Mbps communication, its length is 
severely limited.     

The high-speed (12 Mbps) cable uses a shielded and twisted-pair 28 AWG gauge wire. 
The maximum distance for high-speed cables is 5 meters. Again this includes all hub to 
hub and hub to device connections. The shield is internally connected to chassis-ground 
at both ends. Usually on data communication systems, the ground is connected at only 
one end, but because the distances are short, this is not a problem.  

NOTE: It might be wise though, to measure the chassis to chassis ground difference 
between both devices before making the connection. 

The power pair on both low- and high-speed cables is 20 to 28 AWG gauge. The power 
pair supplies between 500 and 100 mA to external devices at +5 V DC. Every port on a 
hub will provide this power to the devices if enabled by the hub. All hubs can decide if a 
port has power applied to the connector. If an external hub is itself powered by the bus 
then it will divide the 500 mA up into 100 mA or so per port.  

������� '!
��	!�
�

When a device is plugged in to a hub, the port on the hub immediately determines the 
speed of the device. The port looks at the voltage on the D+ and D– lines. If the D+ line 
goes positive, the port knows that the device is a high-speed device. If the D– line goes 
positive, the port knows that the device is a low-speed device. If both D+ and D- voltages 
fall below 0.8 V DC for more than 2.5 microseconds, the hub sees this as the device 
having been disconnected. If the voltage on either line is raised above 2 V DC for more 
than 2.5 microseconds, the port sees this as the device having been plugged-in.  
 

Full/Low Speed
USB

Transceiver

Full/Low Speed
USB

Transceiver

USB
Cable

USB
Cable

Full Speed
USB

Transceiver

Low Speed
USB

Transceiver

Hub or Device

Device only

+5Vdc

+5Vdc

+3.0 - 3.6Vdc

+3.0 - 3.6Vdc

Grnd

Grnd

D+

D+

D+

D+

D-

D-

15kW

15kW

15kW

1.5kW

1.5KW

15kW

D-

D-

 

Figure 10.7 
USB wiring diagram 



�"$������������	����
����
������������
���������������������������
���
 

The idle states for low- and high-speed devices are opposite of each other. For the low-
speed device the idle state is the D+ line at 0 volts, and the D– a positive voltage. The idle 
state for a high-speed device is such that the D+ is a positive voltage and the D– is           
0 volts. In most data communications, a positive voltage indicates a zero (0) condition, 
and a one (1), a minus voltage. In the USB system it is not possible to say this because it 
uses an encoding system called NRZI. 
The voltages used for differential balanced signaling are: 

• Maximum voltage transmitted +3.6 V DC 
• Minimum voltage transmitted +2.8 V DC 
• Minimum voltage needed to sense a transition +/– 2 V DC 
• Typical line voltage as seen from the receiver +/– 3 V DC 

������� 0123������!��
��++!�
�

 

Figure 10.8 
NRZI example 

The USB uses non-return to zero inverted (NRZI) encoding scheme. In NRZI, a ‘1’ is 
defined as ‘no change’ or ‘transition’ of voltage whereas a  ‘0’ is a change or transition of 
voltage. A string of ‘0s’ would cause a clock-like data stream. The USB signaling system 
uses the transition from one voltage to another to synchronize the receivers. A stream of 
ones therefore would mean no transitions. This would cause the receiver to lose 
synchronization. To overcome this problem the USB system uses a 6 of 7 bit stuffing 
technique. If six or more ones are to be transmitted in a row the transmitter stuffs in a 
zero (a transition). If the receiver sees six ones in a row, it knows that the next transition 
(zero) is to be ignored. 

�����"� 4������!
��!���!���

Devices like keyboards and mice need power to operate. This power is supplied by the 
USB system through the cables and hubs. External hubs can be either self-powered or 
powered off the bus. The voltage supplied by a USB hub is +5 V DC. The hubs must be 
able to supply a minimum of 100 mA and a maximum of 500 mA, through each port. If 
an external hub with four ports is powered off the bus, then it will divide the 500 mA 
supplied between the ports. Four times 100 mA equals 400 mA. This leaves 100 mA to 



����������
���
��������
���������"%�

run the hub. It is not possible to connect two bus-powered hubs together unless the 
devices connected to the last hub were self-powered. If the external hub is self powered, 
that is mains powered, it should be able to supply 500 mA to each of the ports.     

10.4 Data link layer 
The data link layer within the USB specification defines the USB as a master/slave, half 
duplex, timed communication bus system, designed to connect close peripherals and 
external hubs. The hardware and software devices such as the host hub controller 
hardware and driver, USB software driver and device drivers all contribute to the data 
link layer of the USB.  

All these devices working together accomplish the following: 
• Collects data off the PCI bus via the device drivers 
• Processes the information or data  
• Verifies, determines and processes the different transfer types  
• Calculates and checks for errors in the packets and frames  
• Puts the different packets into a 1 ms frame 
• Checks for start of frame delimiters 
• Sends the packets to the physical layer 
• Receives packets from the physical layer 

�

&��'��'���(
�	� �� ������(�� &�
�������	�

%� )&&� *���

�� +,�'�� -��'��

�� .,�'�� /	����

�� /	����� ����0�

 

Table 10.1 
USB data link layer block diagram 

������� ����
+�������
�

A good place to start when looking at the data link layer of the USB is at the four 
different transfer types. The wide range of devices that the USB has to deal with require 
that there be multiple transfer types.  

These are: 
• Interrupt transfer 
• Isochronous transfer 
• Control transfers 
• Bulk transfers 

 
As stated before, there are two speeds that can be used in the USB system. For the most 

part the data link layer is the same, but there are some differences. The low speed devices 
do not support bulk and isochronous transfers. The reason for this will become apparent 
in the following transfer descriptions.  



�"�������������	����
����
������������
���������������������������
���
 

1�'�		��'�'	��
2�	�

The interrupt transfer type is used for devices that traditionally used IRQ lines. Devices 
like keyboards, mice and DAQ cards use the IRQ lines to tell the computer that they need 
servicing. The USB does not support devices that initiate requests to the computer. To 
overcome this problem the USB driver initiates a poll of those devices that it knows need 
periodical attention. This poll must be frequent enough so that data does not get lost but 
not too frequent as to use up much needed bandwidth. When installed, the device 
determines its minimum requirements for polling. Devices that need to be polled are 
rarely polled on every frame. The keyboard is typically polled only every 100th frame.  

1
���	����
�'	��
2�	�

Isochronous transfer is used when the devices need to be written to or read from, at a 
constant rate. This would include devices like microphones and speakers. The transfer 
can be done in an asynchronous, synchronous, or device specific manner, depending on 
the device in use. This constant attention requires that the bulk of the bandwidth of the 
frame be allocated to one or two devices. If too many of these transfers take place at the 
same time data could be lost. This type of transfer is not data quality critical. There is no 
error correction and lost or data that is in error, is ignored. Low-speed devices cannot use 
isochronous transfer because of the small amounts of data being transferred. It is not 
possible to move data fast enough using low-speed devices. In an isochronous transfer, 
the maximum amount of data that can be placed in one packet is 1023 bytes. There is no 
maximum number of packets that can be sent. 

&��'	���'	��
2�	�

Control transfers are used to transfer specific requests and information to specific devices. 
This method is used mostly during the configuration and initialization cycles. These 
transfers are very data critical and require a response or acknowledgement from the 
device. Full error correction is in force for this type of transfer. All devices use this type 
of transfer at one time or another. These transfers use very little bandwidth but because 
the device must respond back to the host hub the frames are dedicated to this one transfer.  

���0�'	��
2�	�

Bulk transfers are used to transfer large blocks of data to devices that are not time 
dependent but where data quality is important. A typical device that would use the bulk 
transfer method would be a writeable CD and a printer. These devices need large amounts 
of data but there is no time constraint like that in a speaker. If data gets there in the first 
10 ms or in the next, is not a problem. But they do need correct data, so this type of 
transfer includes handshaking and full error correction. 

������� 4��5��
�����+��/�
�

The USB protocol can and often does use a multi-packet-frame format. The USB frame is 
made up of up to three parts. One frame equals one transaction.  

The packets are of the following type: 
• The token packet  
• The data packet 
• The handshaking  

 



����������
���
��������
���������"��

Every frame starts with a token packet. The token packet includes other smaller 
packets. These are, the synchronization pattern, packet type I.D. and token packet type.  

There are four types of token packets – start of frame, in packets, out packets and setup 
packets. The start of frame/token packet indicates the start of the packet. This tells the 
receiver that this is the beginning of the 1 ms frame. The in packets are packets that will 
transfer data in from the devices to the PC. The out packets are packets that will transfer 
data out from the PC to the device. The setup packet is used to ask the devices or hubs for 
startup information and have information for the devices or hubs. 

A special packet is only used on low-speed transfers. It is called the preamble packet. It 
is a shorter packet than the high-speed frame. It only holds up to 64 bytes of data and 
always uses handshaking. It only has three variations – in packet, out packet and setup 
packet. 

At the end of all packets, except the isochronous-frames, there is an error correction 
packet. On high-speed frames, it is a 16-bit CRC. Low-speed devices use a 5-bit CRC, 
because of their smaller packets. If a device or host hub sees an end of frame message, it 
checks the CRC. If the CRC is correct then it assumes that this is the end of the message. 
If the CRC is not correct and the time-out limit has not been reached, the receiver waits. 
If the CRC is not correct and the time has been reached, the receiver will then assume that 
the frame is not correct. 

10.5 Application layer (user layer) 
The application layer can be divided into two sub-layers, the operating system (such as 
WIN 2000) and the device application software (such as a modem application program). 
The application layer of the USB standard is in reality a User layer. This is because the 
USB standard does not really define a true application layer. What it does define is a user 
layer that can be used (by an application programmer) to build an application layer.  

The operating system user layer includes: 
• Commands  
• Software drivers 
• Hub configuration 
• Bandwidth allocation  

 
Device applications would use 

• Commands 
• Device drivers 
• Device configuration 

 
Specific user layer information can be found in the universal serial bus specifications at 

the USB implementers forum web page at http://www.usb.org 

10.6 Conclusion 
Designed as a peripheral connection system for the PC, the universal serial bus can be 
adapted to be used on data acquisition systems. Now that the DAQ industry is developing 
more and more intelligent data acquisition and control systems, the USB is easily 
adaptable to modern DAQ. The devices can either be low- or high-speed devices, and are 
quickly and easily connected to a PC.  There are many devices in the market now and it is 
bound to grow in the future. Engineers are usually more interested in getting the job done 



�"�������������	����
����
������������
���������������������������
���
 

than in spending a lot of time and trouble getting the DAQ system up and running. With 
the plug and play system incorporated in USB the user does not have to spend hours or 
even days configuring a DAQ system. This time saved will often offset the added cost of 
the devices. 

The target speed of USB 2.0 is 480 Mbps, as announced by the USB 2.0 Promoter 
Group, consisting of Compaq, Hewlett-Packard, Intel, Lucent, Microsoft, NEC and 
Philips. The target speed announcement coincides with the release of the USB 2.0 
specification draft to industry developers. 

���%��� ��5���	��
�/���
�

Included in the document above are the following information sources. 
Universal serial bus specification – USB implementers forum web page at: 
http://www.usb.org 
Universal serial bus system architecture – MindShare, Inc by Don Anderson: 
http://www.amazon.com 
Intel USB product specifications Intel 8×930 and 8×931 USB peripheral controllers at: 
http://www.intel.com/design/usb/prodbref/29776501.htm 
Other web sites used 
http://www.lucent.com/micro/suite/usb.html 
http://www-us.semiconductors.philips.com/usb/ 

 



11 

������������	
����
�

11.1 Open and closed loop control 
By definition, a data acquisition and control system is not only required to acquire data 
from a system or process, but also to act on it. In an industrial environment the methods 
and techniques used to calculate and perform the appropriate actions at any given time, 
are often extremely critical. Large or incorrect control actions can adversely affect the 
performance of the system, and can indeed prove to be extremely costly. One well used 
method of controlling a system or process, in which the current state of the system is fed 
back to the controller (i.e. the PC), is closed loop control. This method, and the use of a 
PID control algorithm to implement it, are discussed in the following section. 

������� ������	�
���

Control systems are classified as open loop or closed loop systems. The distinction is 
determined by the control action, which is the mechanism responsible for activating the 
system to produce the output. An open loop control system is one in which the control 
action is independent of the output. In this type of control system, there is no feedback 
from the process on the results of a given control action taking place. 

Two important features of open loop control are: 
• Their ability to perform accurately is determined by their inherent accuracy 

and their calibration. Calibration is the re-establishing of an input–output 
relationship, to obtain the desired system accuracy. 

• They are not generally troubled with problems of instability. 
 

A closed loop control system is one in which the control action is dependent on the 
output. In this type of control system there is continuous feedback from the process on the 
results of a given control action taking place. 

The most important features of a closed loop control system are: 
• Increased accuracy. 



��������������	����
����
������������
���������������������������
���
 

• The sensitivity of the output/input relationship (transfer characteristic) to 
variations in system characteristics being reduced. 

• Reduced effects of non-linearities. 
• Increased bandwidth. 
• Tendency towards oscillation and instability. 

������� 
�������������
�����

���
�	�
�����	���

Consider the simple closed loop control system shown in Figure 11.1, in which the fluid 
in a tank is being used for an industrial process.  The process requires that the fluid in the 
tank must be maintained at a certain level. 
 

 

Figure 11.1 
Fluid level closed loop control system 

The required fluid level is called the reference, or SetPoint, and is the input {s(t)} to the 
system. Depending on the fluid level requirements, the SetPoint may vary with time.  The 
actual fluid level is the output of this system {l(t)} and will vary in time according to the 
use of water in the tank. 

The input to the controller is the error difference {e(t)} between the required level 
{s(t)} and the output level {l(t)}. 

The output of the controller {m(t)} sets the valve of the actuator to supply more or less 
fluid flow to the tank, depending on the level of water in the tank. 

If the level of the tank is lower than the SetPoint, the value of the error difference is 
positive. A positive signal is sent to the valve to open up and allow more fluid to flow 
into the tank. Conversely, if the fluid level in the tank is greater than the SetPoint, the 
value of the error difference is negative. A negative signal is sent to the valve to close up 
and restrict the flow of fluid into the tank. 

Where the output is subtracted from the reference input, the system is known as having 
negative feedback. 

������� �����
�	�
�����
��	����

The closed loop control process, described above, can be represented by the block 
diagram shown below in Figure 11.2. 
 



������������������
  ��� 

 

Figure 11.2 
Block diagram of a closed loop control system 

One effective method of calculating the required controller output m(t) for a given 
control process, is the PID (proportional, integral and derivative) control algorithm, 
which is the sum of four terms. This is shown in the following two equations for both the 
real time continuous and discrete time processes: 

 Bias 
dt 

t de Kd dt t e Ki t e  K t m 
   p + + ∫ + =   ) ( ) ( ) ( ) (  

�������

m(t) is the output 
Kp is the proportional gain constant (l/sec)  
Ki is the integral gain constant (l/sec) 
Kd is the derivative gain constant (sec) 
e(t) is (SP–PV) [set point – process variable] 
‘Bias’ is a constant determined from knowledge of the system 

 
Bias 

T 
i e i e 

× Kd k e T×Ki i e  Kp i m  
i k 

k 
 + − − 

+ + = ∑ 
= 

= 

)] 1 ( ) ( [ ) ( ) ( ) ( 
0 

 

�������

m(i) is the output at time of the ith sample (=i*T) 
Kp is the proportional gain constant 
Ki is the integral gain constant (1/sec) 
KD is the derivative gain constant (sec) 
T is the time interval for sampling  
i is the number of samples  
e(i) is the error at ith sampling interval  
e(i–1) is the error at (i–1)th previous sampling interval  
‘Bias’ is the feed-forward or constant-bias  
e(i) is the SetPoint (i) – process variable (i) (measured at the ith sample) 
 

The first term (proportional term) of these equations is directly proportional to the 
current process error. The value of the proportional constant (Kp) determines how hard the 
system reacts to differences between the SetPoint and the actual process variable. 

Simple proportional control cannot take into account load changes in the process under 
control. This is handled by the integral term of the PID equation, which sums up the long-



��������������	����
����
������������
���������������������������
���
 

term error (m) in the system and adds a correctional value to the controller output, 
proportional to the integral constant (Ki). 

The rate of change of the process error is compensated for by the derivative term. This 
results in a much faster process response. The derivative term results in a much harder 
control response, when the error term is going in the wrong direction and a dampening 
effect when the error term is going in the right direction. 

This can be described in another way. If the error term is getting larger, the derivative 
term will contribute a positive correction to the output; the size of the correction being 
proportional to the speed at which the error term is getting larger. Conversely, when the 
error term is getting smaller, the derivative term is negative. If the rate at which the 
derivative term is getting smaller is too quick, the output from the controller will be 
reduced, thereby dampening the output. 

The bias term is quite simply the value of the controller output that is required to 
maintain the output at the SetPoint reference. 

������� ��������	�����
������� ��	�������
����

The response of a closed loop system to a step change in the input reference is known as 
the step response of the system. This is illustrated in Figure 11.3. The step response 
provides an insight into the transient response of the system, in particular its speed of 
response and relative stability. 

The overshoot is the maximum difference between the transient and steady state 
responses of the control system.  It is a measure of the relative stability. 

The rise time is defined as the time required for the output response to a unit-step 
function input to rise from 10% to 90% of its final value. 

The settling time is defined as the time required for the response to a unit-step input to 
reach and remain within a specified percentage of its final value (steady state value). 

The values of rise time and settling time indicate the speed of response of the control 
system. 

 

Figure 11.3 
Step response of a closed loop system 



������������������
  ��� 

The values of Kp, Ki and Kd affect the characteristics of the step response. This is shown 
in Figure 11.4. 
 
 

 

Figure 11.4 
Effect of damping on the step response of a closed loop system 

�����!� ����"����

The natural tendency of closed loop systems to oscillate around the required output value 
can be seen from the step response.  In addition to this, there are many practical control 
systems in which it is almost impossible to entirely eliminate the error. 

Such systems allow for a zero crossing deadband.  This adjustable deadband allows the 
user to select an error range above and below the SetPoint where the output will not 
change. 

This deadband is useful in ensuring that the output does not oscillate even though there 
is a small error in the system. 

�����#� $�	��	�����	����

A feature many controllers incorporate, is output limiting (using an anti-reset windup), 
whereby the software acts to limit the output from the PID equation from exceeding a 
certain value. 

In terms of the PID control algorithm, the integral term is excluded from further 
calculations until the output returns to a value within the correct operating range. 

�����%� &�������
�	�
�� �"��������	��������

Where a control system allows for manual user control of the output, a return to 
automatic control could cause a ‘bump’ in the controller output, and subsequently in the 
system output. Bumpless transfer allows the system to transfer from the manual mode to 
the automatic mode (where the PID equation determines the output), without the output 
bumping up or down. This is achieved in software by calculating a required integral term 
in the PID equation for automatic mode, so that no immediate 'bump' is caused to the 
output of the controller. The system then slowly adjusts back to the reference output 
under automatic control. 



��������������	����
����
������������
���������������������������
���
 

11.2 Capturing high speed transient data 
Transient signals are by their nature very fast.  In the frequency domain, a transient pulse 
contains many high frequency components – the narrower the pulse, the wider the range 
of frequencies over which the pulse can be represented. Theoretically, an infinite impulse 
is represented by all frequencies across the frequency spectrum.  Intuitively, it is obvious 
that the narrower the pulse, the higher the rate at which it must be sampled to be 
accurately represented. The following sections discuss the special data acquisition 
hardware requirements for capturing high-speed transient data as well as the special 
triggering techniques used. 

������� '(��"
����
����	�
���������
�����)�������	��

Consider a system, with a sampling rate of 10 MHz (i.e. a sampling period of 100 ns), 
producing 10 million samples/second. Apart from the speed limitations that could prevent 
the storage of such data to the computer’s memory, there is the obvious question of the 
amount of data being stored, especially when the transient pulse to be captured may only 
be of 5 µs duration. 

Therefore high-speed data acquisition systems used to capture transient data, consist of 
an A/D converter followed by fast digital memory, which stores the sampled values 
sequentially, in a circular buffer. A circular buffer is used so that no matter how long it 
takes to get a trigger event, the system never stops converting the incoming signal. If a 
trigger event never happens, the A/D system should keep on storing data in the buffer 
indefinitely; continually overwriting the old data with the new. 

When a trigger occurs, the circular buffer information can be saved, thus capturing the 
latest ‘n’ seconds of data for display, analysis or permanent storage in the computer’s 
memory. The amount of memory required is determined by the speed of the fastest 
transient that will be recorded (affects the sampling rate) and the amount of samples 
before and after a triggerable event that needs to be stored. 

������� ���������
����*���+������
�	+	���������,�

Old style oscilloscopes only allowed the viewing of a transient event, after the trigger 
event (i.e. post-triggered). In high-speed A/D systems, where data is continuously 
acquired and stored in a circular buffer, it is possible to capture and view what happened 
before a transient event. This is known as pre-triggering. 

Depending on the equipment being used several trigger modes are usually available: 
• Post-trigger – collect N samples following the trigger. 
• Pre-trigger – collects data into the circular buffer, terminating in the trigger. 
• Pre/post trigger – collects data into the buffer and N additional samples 

following trigger. 
• Delay trigger mode – collects N samples a certain delay after the trigger 

������� ���������
���������������

A number of trigger sources and programmable trigger levels are available on high-speed 
boards for triggering the acquisition. 



������������������
  ��� 

�
������������������

An analog trigger on a single channel of the board or from an external analog trigger 
source starts the acquisition. 

The threshold level and slope at which the trigger begins the acquisition is commonly 
programmable. A high resolution DAC output generates the programmed voltage 
threshold, which is then compared to the analog voltage level from the trigger input. 
When the two voltage levels are equal and the slope polarity of the trigger is correct, the 
acquisition begins. 

Where a trigger capability is specified as above or below level, only the value of the 
analog input trigger and its level with regard to a programmable threshold, is considered. 
The trigger slope is ignored. 

���������������������

An external digital trigger input, TTL compatible and programmable as active on the 
rising or falling edge, triggers the acquisition process. When using the digital trigger 
mode, some boards specify a minimum pulse width – be wary of this! 

����������������������

The data acquisition process is started by a call from software. 

 ��������������������
�

Some boards have dual-trigger capability, which allows triggering to occur on a 
combination of trigger inputs. The data acquisition will not occur unless both trigger 
inputs reach their programmed threshold levels. 

Logic analyzers and digital storage oscilloscopes, which allow multi-event, multi-level 
or sequential trigger modes, are examples of equipment that require more complex 
triggering capabilities. 

 



12 

���������	��
���

Introduction 
The PCMCIA (PCMCIA stands for Personal Computer Memory Card International 
Association) standard was developed to standardize the many different types of memory 
cards so that they could interface to a wide variety of personal computers. In 1995 the 
name was changed to simply the PC Card. The PC Card can be considered the same as a 
standard plug-in card and is used for many different types of devices including flash 
memory, analog to digital conversion, GPIB, digital I/O, networks, and modems. Special 
drivers for these cards are supplied by the PC Card manufacturers. All settings, including 
base address, IRQ and DMA, if available, are set up by the user through the installation 
software. Temporary stay resident programs (or TSRs) are used to allow constant access 
to the card by the user. The PC Card consists of miniaturized electronics inside a small 
metal box with a connector at one end. The connector is an industry standard 68 dual in-
line socket that fits into the host computer’s PC Card adapter. The other end of the PC 
Card may or may not have a connector, depending on the type of device.   
 
 

 

Figure 12.1  
PCMCIA Card  



���������	��
��  
�� 

12.1 History 
 In 1988, the Personal Computer Memory Card International Association was formed in 
America, by representatives from memory card and chip manufacturers. In Japan, the 
Japan Electronics Industry Development Association (JEIDA) had been working on a 
memory card standard since 1985.  In 1989 the PCMCIA adopted the 68-pin socket from 
JEIDA.  Since then JEIDA and PCMCIA have been working very closely to keep their 
standards compatible. By 1990, version 1.0 of the PC Card standard was released. This 
standard specified memory cards and a socket for virtual drives.  The idea was that the 
memory card would replace the floppy disk. Initially the specifications were developed 
for the IBM PC, but soon other types of computers, such as the Apple Macs, were 
incorporated into the standard.    

With the release of version 2.0 in November 1992, the PCMCIA standard now includes 
provisions for input and output devices such as modems, hard disk, and data acquisition 
cards. It was about this time that the association realized that for full compatibility they 
needed to include software in the standard.  This software included card services and 
socket services to interface the PC Card to the computer.  In 1995 the Personal Computer 
Memory Card Association decided that the acronym PCMCIA was too confusing so they 
put out a notice that the PCMCIA card would now be known as the PC Card.  In 
conjunction with this, they released a new standard with no version number. This new 
standard is called the PC Card Standard. Below is a list of release dates for the hardware 
and software standards. 

 
Nov 1990  V 1.0 type 1 memory card  
Aug 1991  V 1.0 socket services  
Sept 1991  V 1.01 type I, II and III added  
Dec 1991  V 1.0 (draft) card services  
Nov 1992  V 2.0 I/O devices  
July 1993  V 2.1 plug and play  
1995  PCMCIA changed to the PC Card (DMA)  
1996  CARDBUS (32-bit) 
 

As with most industry driven standards it is often hard to say who started the PC Card. 
The list of manufacturers is long, but it can be said that Intel had no small part, in so 
much as they were one of the first to push their memory chip sets, to encourage the 
manufacture of PC Cards.  Soon afterwards, companies such as Cirrus and Vadem picked 
up the ball as it were, and ran with it. Also, it must be mentioned that the United States 
government supply office’s decision to require all their computers be supplied with PC 
Card interfaces, has helped ensure the future of the PC Card.  

12.2 Features 

������� �����	
����
�	�������

The PC Card’s main feature from the start was that it was small and portable. The PC 
Cards are small enough to fit in a shirt pocket.  It is no surprise then that the portable 
computer market was the first to include PCMCIA host bus adapters as a standard item.  
The PC Card can be used on virtually any PC or Macintosh computer. It is a 16-bit bus 
device that plugs into one of two slots in a LAPTOP or a full size computer. The host 
card adapter can either be supplied with the computer or added latter. The host card 




�����

��

���
�
�	
������������������������
�����
������������������ 

adapter on a full size computer has a cable with an edge connector that plugs into the bus 
slots on the motherboard. These bus adapters can be purchased as third party devices.  
Usually the adapters can hold two type I, two type II or one type III card.  

������� �������

All PC Cards, including the old PCMCIA types, are 16 bit. There are twenty-six address 
lines that allow up to 64 megabytes of addressable memory space. The CARDBUS is a 
32-bit device that addresses up to 4.2 billion addresses. This allows (when the prices are 
low enough) for a four-gigabyte, type III memory card.  

������� ��
��������
��	������������

DMA is included in the PC CARD standard but not on the PCMCIA versions 1, 2, or 2.1 
cards. It is also included in the CARDBUS part of the standard. DMA is a very useful 
tool in transferring information from data acquisition devices such as analog to digital 
converter cards. DAQ devices need DMA to transfer information that is sampled at 
speeds greater than 40 kHz. PCMCIA cards of version 2.1 and earlier can only transfer 
information using polling or interrupt methods. 

������� ������ �
����
	��	
���
	
�!	
�
��

One of the greatest advantages of the PC Card is that many different types of devices can 
be built into one card. Manufacturers are producing combination PC Cards that include a 
cellular-ready 28.8 k baud modem, fax and Ethernet. In the future, it may be possible to 
have every type of device that can be plugged into a computer on one card. This 
multifunction ability also allows different formats, such as DOS and Unix files, to be 
placed on the same card. Once the PC Card is installed and the correct software has been 
loaded the card becomes transparent to the system. 

The PC Card then responds to the PC as though it was a standard card plugged into the 
bus.  This makes the card problem-free from the users' point of view. Generic and third 
party software can then access the card as though it was an old standard plug-in card. This 
eliminates the need for buying new software for the PC Card.   

�����"� #�$�����	%��

New technology in the PC industry has seen the development of low voltage 
microprocessors. The new PC Card supports 5.0, 3.3 volt, and what the PC Card people 
call ‘x.x’ volts. This ‘x.x’ volt is placed in the standard for future development by 
computer chip manufacturers. There are three different voltage types of host bus adapters 
(i.e. the computer adapters):  5 volt only, 3.3 volt only, and a combination 5 volt and 3.3 
volt adapter. This combination adapter can sense which voltage the card needs, and 
automatically configure the power supplied to the PC Card. This combination of voltages 
relates to plug and play. 

������� &��%�	
��!�	��

Plug and play is the ability of a PC to automatically recognize a PC Card.  This 
recognition would determine if the card has been inserted, the type of card, and the 
configuration of the software needed to run the card. The software allows the PC Card 
slot to adjust its voltage for the level needed for the card. True plug and play has the 
ability to boot up and run off the embedded auto-executable batch files, by looking at the 



���������	��
��  
�� 

configuration of the programs stored on the PC Card. For plug and play to be fully 
realized, the PC, BIOS, PC Card, card and services software, and application software 
must all follow the same PC Card standard. The problem is that PC Cards, PCs, and 
software packages are made by different companies. Getting them to follow a voluntary 
standard can be extremely difficult.   

�����'� ()�������
�!�	������

Execute in place means that a PC Card such as a flash memory device can run a program 
from the card instead of downloading the program from memory. A floppy disk can do 
this, but because of the seek-time on the drive, it takes too long. Flash memories have 
very low seek-time and therefore it would be the same as having the program in the 
memory of the computer. Auto-execution of programs when the PC Card is inserted into 
the computer has its own problems that are not within the scope of this book. 

�����*� &
�������

The downside of the PC Cards is two fold. One is that the retailers have problems with 
them being stolen because they are so small. If you wish to buy a PC Card, you usually 
have to ask the retailer to open up a locked case where they are kept. The other problem is 
that the external connectors are usually small. This means that they can easily break when 
slightly tugged. It is best when PC Cards are used in a portable PC to mount the PC in a 
docking station or temporary jig so that the PC doesn’t move. Cables attached to the PC 
Card should be so placed that they are not snagged by accident. 

 12.3  Products 
In the beginning, the PC Card cards were just memory cards, but it soon became evident 
that this new format was perfect for all kinds of other devices. The manufacturers found 
that it was easy to include many functions on one card. The following is a short list of 
devices that are produced. Many of these devices can be combined on one PC Card. 

�������� ����
���	
���

The memory cards include Flash memory, RAM, and ROM devices. Flash memory is 
used to download data, increase memory and load programs in products like data loggers.  
RAM cards are used as virtual floppy disk drives and ROM cards are used as fixed 
program cards.      

�������� ���+��
�����

There are two types of disk drives for the PC Card.  One is the all-electronic type.  This 
card uses RAM to save the information. The other uses a modified version of the 
mechanical spinning magnetic disk. Both types of hard disk have their advantages and 
disadvantages. The RAM based drive is faster and has no moving parts, but is very 
expensive at the moment. The mechanical drive is cheap and at the moment can hold 
larger amounts of memory, but it is slow (12 ms seek-time) and prone to breakage due to 
the presence of moving parts. Eventually the price of memory cards will fall and the 
mechanical hard disk will go the way of the punch card.  

�




�����

��

���
�
�	
������������������������
�����
������������������ 

������� &	%�
��

Pager cards are used in offices and factories on portable PCs to allow the user to receive 
or transmit messages to either a central location in the office or around the world. This 
feature can be included with other functions and increases the versatility of personal and 
business communications. 

������� #��	��	
�	�
��$�
+��

The local area network market is one of the fastest growing electronic markets. PC Cards 
that include Ethernet or token ring devices on the card are very popular. The newest PC 
Card is the wireless LAN that can remotely connect to a network at distances of 300 to 
500 meters without a repeater. These PC Cards function as modems, faxes, and LANs all 
on the same card. 10 BASE 2, 10 BASE T, 100 BASE T, token ring and wireless Ethernet 
are just some of the local area networks that are available on PC Cards.  

�����"� �������

There are three types of modems available on the market, 14.4 K bps, 28.8 K bps, and 
ISDN in the PC Card format. The 14.4 K bps model is the cheapest and some would 
argue that this is enough for current communications. However, those with vision and a 
local web server find that 28.8K bps works best for them. ISDN technology is growing 
daily and will soon be available in all areas. ISDN provides a large increase in speed over 
standard telephone lines. Most PC Card modems now come with FAX capabilities. Some 
cards can also be plugged into a cellular telephone. The cable for connecting to the 
cellular phone is ordered after the modem is purchased from the PC Card manufacturer 
because there are many different types of mobile phones. The main features to look for in 
a PC Card modem are speed, which countries it can be used in, and the durability of the 
cable connection. 

������� ,�����	
�����!-�
��

As of this writing, manufacturers of digital cellular telephones are developing a PC Card 
telephone. This will give the user total portable communications anywhere in the world. 
Features of this card could include modem, fax, voice mail and voice communications.  

�����'� �	�	�	�.�������
�

The data acquisition market has also increased tremendously in the last few years.  Many 
manufacturers have transferred their products from standard plug-in cards to PC Cards. 
With the advent of the PC Card standard, it’s now possible to purchase a multi-function 
DAQ card that completely replaces the standard plug-in card. The cost has been coming 
down and now it is often cheaper to buy PC Cards than full-size cards. Almost all DAQ 
cards are now available in the PC Card format. DAQ PC Cards include analog to digital 
converters, digital input and output, counter timers, digital to analog converters and 488 
GPIB systems. 

�����*� ��%��	�����������
�

Some manufacturers are producing dedicated devices on PC Cards. One such device is 
the digital multimeter. The PC Card voltmeter has fixed wires on one end that the user 



���������	��
��  
�� 

uses to read voltages on electronic equipment. Windows software graphically displays the 
voltmeter on the screen. Now you can turn your $5,000 laptop into a $29 voltmeter! 

�����/� 0&����������

Recently a few manufacturers have developed a global positioning system that works on a 
PC Card. This device will tell you your location and the time anywhere in the world in a 
matter of seconds. The price of these units will soon rival stand-alone units. Additional 
features that are in the pipeline are multi-functional units with, faxes to download weather 
maps from satellites, and voice mail. 

������1� &��+����
%	
���
�

The pocket organizer is becoming more powerful every day. The users are demanding 
greater versatility and usability. This has pushed the manufacturers to include a PC Card 
slot on their pocket organizers. The UK HP OMNIGO 100 is just one product that has a 
PC Card slot on board. This slot gives the user access to many features that other 
organizers lack. It also will insure the future usability of the pocket organizer as PC Card 
technology expands. 

�������� ��	
��	��
��!
��������

Although the PC Card was developed as a PC interface, its uses have not gone unnoticed 
by other product manufacturers. Some products have been using memory cards for a long 
time. Data logger manufacturers use memory cards in their products to increase the 
memory size, download data and programs. Banks are now starting to use the PC Card to 
replace credit and debit cards. JVC is producing an overhead LCD projection viewer that 
has a PC Card slot. This will let the user carry only the viewer and a PC Card containing 
the graphics and text for the lecture. It is said that some day almost all electronic products 
will be PC Card compatible.    

�������� 2������������!���
��

At the moment portable computers make up the biggest users of PC Cards, but this will 
soon change. Already the US government requires all PCs to be equipped with a PC Card 
interface. PC Card drives can be purchased for about the cost of a floppy drive. These 
interfaces have a cable attached that plugs into the standard bus sockets inside the 
computer. Computer manufacturers such as IBM (Optiva model) are including the 
adapters as standard equipment. The trend is that the PC Card will replace the floppy 
drive and eventually the hard disk on all full-size computers. 

12.4 Construction 
The construction of the PC Card is very simple from the user’s point of view, but because 
it is so small it is very difficult from a manufacturing point of view. All of the electronic 
components are flat pack instead of the usual dual inline pin type. The PCB has to be very 
thin and this causes problems when soldering the part to the board. Special high 
temperature boards have been specially developed for PC Cards. Normal PCBs are either 
too thick or too flexible. The large number of parts that need to be put on the board causes 
its own problems. Manufacturers are constantly searching for ways to overcome these 
problems. 




�����

��

���
�
�	
������������������������
�����
������������������ 

������� �����	
����!���

Size 85.6 mm × 54.0 mm  
Type I 3.3 mm thick  
Type II 5.0 mm thick  
Type III 10.5 mm thick  
Type I (extended) 3.3 mm thick  
Type II (extended) 5.0 mm thick 

������� ()��
������!���

The standard allows PC Cards to extend past the host bus adapter for any length, the 
manufacturer wishes, on type I and II cards. This provides for larger cards and therefore 
more electronics to be incorporated into the PC Card. The only restriction on this is that 
the card must not change thickness until it is 10 mm past the host bus adapter. 

12.5  Hardware 
All PC Cards are 85.6 mm long by 54.0 mm wide. The electronics is usually encased in a 
metal box with a 68-socket connector at one end. This socket plugs into the host bus 
adapter on the computer with pins of different length. The ground and power pins (GND 
and VCC) are 2.5 mm long.  This allows the card to be powered up before the I/O section.  
The general interface pins are 2.1 mm long and the card detection pins are 1.5 mm long.  
This completely powers up the memory and I/O before the computer knows that it has 
been installed.  PC Cards will work in an environment of at least –20 degrees to 60 
degrees C and 95% humidity. They should, according to the standard, take up to 10,000 
insertions.  The contacts of the sockets should pass up to 0.5 amps. 

The standard also includes thermal shock, electrostatic discharge, x-ray exposure, EMI, 
vibration, shock, bend test, warp test and even a drop test. The only other test that could 
be added is a cable pull test for externally connected cables such as the cable that goes to 
the telephone jack on a modem.  These external cable connections to the card seem to be 
the weakest point of a PC Card.  The PC Card can work (depending on the type of card) 
at 5 volts, 3.3 volts or some other future voltage.  This means that there are three different 
types of cards that can be inserted into a host bus adapter. Three different keying 
structures are defined in the PC Card standard – a standard card, 5 volts only, a low 
voltage card, 3.3 or less and a double key that allows both types of card to be inserted.  
 

 

Figure 12.2  
Standard and low voltage keying 



���������	��
��  
�� 

���"��� &�$�
�

Power usage on the PC Card and HBA can vary widely. Some host bus adapters use 
power even when a card is not inserted. An external PC Card hard disk can use up to 20% 
of the battery power when in use. It is therefore prudent to inquire about the power usage 
when purchasing a PC Card.   

���"���� &�
�	���%
��
���

The obvious physical attributes of the PC Card vary little between the different 
classifications of cards.  There are five basic types of PC Cards:   

• Memory only cards (usually type I)  
• Memory or I/O cards (usually type II)  
• I/O with DMA (usually type II)  
• ATA interface (usually type III)  
• AIMS interface (usually type III) 

���"���� ����
���
����	
���

There are two types of memory space within a PC Card: attribute memory and common 
memory. Attribute memory is where the configuration information is stored. This 
includes the configuration registers and the CIS (card information structure). The 
configuration registers hold information such as software reset, bus size, power down 
control, audio enable and interrupt pending. The CIS contains information about timing, 
memory addresses, device type, device speed, and common memory size. The common 
memory is the working address space that is used to map the memory arrays that store 
data and/or programs. Memory only sockets have the following pin outs. 
 

 

Figure 12.3  
Memory only pin outs 



������

��

���
�
�	
������������������������
�����
������������������ 

���"��� 345�,	
����

The memory only interface is converted to an I/O interface after the HBA detects that an 
I/O card has been inserted.  Pins that are used by the memory only interface are converted 
to the appropriate I/O pins. I/O devices would include modems, data acquisition, and 
LAN PC Cards. Below is a list of pins that are added or changed.   
INPACK# PIN 60 ADDED  
IORD# PIN 44 ADDED  
IOWR# PIN 45 ADDED  
IREQ# PIN 16 CHANGED FROM READY  
IOIA16# PIN 33 CHANGED FROM WP  
SPKR# PIN 62 CHANGED FROM BVD2  
STSCHG# PIN 63 CHANGED FROM BVD1 
 

 

Figure 12.4  
I/O interface pin outs 

���"�"� 345�$��-���
��������
��	������

With the addition of DMA, six pins are reassigned by the HBA. These pins are used by 
the DMA mechanism to transfer control of the DMA system.   

The pins that have been changed are:   
DACK PIN 61 CHANGED FROM INPACK#  
TC(WRITE) PIN 9 CHANGED FROM OE#  
TC(READ) PIN 15 CHANGED FROM WE#.  CAN BE ASSIGNED TO ANY ONE OF 
THREE PINS  
DREQ PIN 60 CHANGED (POSSIBLY) FROM INPACK#  
DREQ PIN 61 CHANGED (POSSIBLY) FROM REG#  
DREQ PIN 33 CHANGED (POSSIBLY) FROM IOIS16#  



���������	��
��  ��� 

The DMA interface pin changes are shown below: 
 

 

Figure 12.5  
The direct memory access interface pin outs  

���"��� �6���
��
 	�����6�	��	�-��
���

The ATA is the interface that connects the hard disks and floppy drives to the computer’s 
data bus. This type of PC Card interface usually used a Type III PC Card.   

The ATA pin out requirements are shown below: 

 

Figure 12.6  
ATA Interface pin outs 



��
���

��

���
�
�	
������������������������
�����
������������������ 

���"�'� �3����
��
 	����	�����
��)�
%��	������
	%���

The AIMS interface supports large data structures such as multimedia with text and 
pictures. It is also used to store still or moving video pictures for electronic cameras.  
AIMS cards require the ability to transfer large amounts of data using block transfer 
methods. To do this the AIMS interface requires 8-bit writes to load the entire 32-bit 
address register. 

The figure below shows the minimum signals required for the AIMS interface. 
 

 

Figure 12.7  
AIMS interface pin outs 

12.6 Software  
The figure below shows the block diagram of the relationship of software and hardware 
in the operation of PC Cards. 
 

 

Figure 12.8  
PC Card software block diagram 



���������	��
��  ��� 

������� &,�,	
���
��
�
��
��

The PC Card is designed to interface with many different brands of PCs. Various standard 
software packages are used to guarantee that each card can talk to the different makes of 
PCs. 

Five different types of software are used to accomplish this feat. PC Card enablers, 
which include:  

• Card services   
• Socket services     
• Test software  
• Driver software  

 
In addition, other support software and firmware is used to enable the PC Card to 

function correctly. These include:   
• CIS (card information structures)  
• TSRs (temporary stay resident programs)  
• Operating systems (such as Windows 95)  
• Autoexec.bat files  
• Config.sys files   
• DOS  

12.7 PC Card enablers and support software 

��������
���
������������� !������"�#
����
The card and socket services software comes with the particular board when purchased. 
The software forms an interface between the PC Card controller in the computer and the 
PC Card. This software may do testing, setup, and control functions. 

���������� !�����
The socket services software is used to interface between the card services and the host 
bus adapter. It allows any type of card to talk to the card services software. The socket 
services software interrogates the PC Card and passes that information on to the card 
services software. It interprets the PC Card’s configuration requirements. It determines if 
the resources needed by the card are available. It checks for changes such as the removal 
of the card. It also releases resources in the HBA if the card is removed. 

�
������ !�����
The card services software interfaces the socket services software to the PC Card enabler. 
The card services software job is to notify the enabler that a card has been removed or 
inserted, manage the resources of the PC Card, and to run PC Card utilities. It also 
handles bulk transfers to and from memory cards.   

�������"�#
����
Test software is used to test the PC Card. These tests may include availability of the card, 
configuration, and/or setup. The test software may come with the card when purchased, 
or from a third party. 

$�! �����"�#
����
Driver software is provided by the manufacturer of the card, host bus adapter or by a third 
party. This software interfaces the application software to the PC Card. 



������

��

���
�
�	
������������������������
�����
������������������ 

�
���!�"��%
�!������&��&���'���(�
The card information structure is the software inside the PC Card that tells the computer 
what type of card is inserted in the slot.   

12.8 Future 
The PC Card has the potential to replace the floppy disk, hard disk and CD ROM. We 
may find one day that the PC Card may even be called just ‘the card’. It has the ability to 
consolidate many devices on one small device. In the future, more and more devices will 
be combined and miniaturized until the whole computer, display, I/O, phone, modem, 
fax, GPS, video, audio and memory are on one PC Card. 

���*��� �	%	��
�������	
��&,�,3��	��
������

• PC Laptop Computer Magazine  

• PC Magazine  

• PC Card System Architecture - MindShare INC. Don Anderson  

���*��� &�
��
	��,��!���
�����
��,	
��3
��

	���
	��������	���
�

 
PC Card Headquarters  
1030G East Duane Ave  
Sunnyvale CA 94086 USA  
Tel: (408) 433 2273  



Appendix A  

���������

This glossary explains some common data communications terms.  Also included are 
some general computer terms, used in this book.  Terms in italics are explained elsewhere 
in the glossary. 

 
24-hour time-of-day mode Counter/timer circuit that may be used as real-

time clock.  Able to control triggering based on 
the time of day. 

  
Absolute addressing A mode of addressing, containing both the 

instruction and location (address) of data. 
  
Accuracy Closeness, of indicated or displayed value, to the 

ideal measured value. 
  
Acknowledge A handshake line that is used by the receiving 

device to indicate that it has read the transmitted 
data. 

  
Active device Device capable of supplying current for the loop. 
  
Active filter A combination of active circuit devices (usually 

amplifiers), with passive circuit elements (resistors 
and capacitors) that have characteristics that 
more closely match ideal filters than do passive 
filters. 

  
Actuator Control element or device used to modulate (or 

vary) a process parameter. 
  
A/D Analog to digital conversion. 
  



	
�������������	����
����
������������
���������������������������
���
 

 

A/D conversion time This is the length of time a board requires to 
convert an analog signal into a digital value.  The 
theoretical maximum speed (conversions/second) 
is the inverse of this value.  See Speed/Typical 
Throughput. 

  
Address Designator for the location of data in a storage 

device; allows the retrieval of data by reading the 
contents of a specific location.   
  Also, the identity of a peripheral device. These 
(normally unique) allow individual devices on a 
single communications line to recognize and 
respond to messages directed at them. 

  
Address register A register that holds the address of a location 

containing a data item called for by an instruction. 
  
AFB Access frame buffer. 
  
Algorithm Normally used as a basis for writing a computer 

program.  This is a set of rules with a finite 
number of steps for solving a problem. 

  
Alias frequency A false lower frequency component that appears 

in data reconstructed from original data acquired 
at an insufficient sampling rate (less than two 
times the maximum frequency of the original 
data). 

  
ALU Arithmetic logic unit. 
  
Analog A continuous real-time phenomenon in which the 

information values are represented in a variable 
and continuous waveform. 

  
Analog input board  Printed circuit board converting incoming analog 

signals to digital values. 
  
Analog output board  Printed circuit board converting outgoing digital 

values to analog signals. 
  
Analog slope channel Sampling can be triggered at a user-selectable 

point on an incoming analog slope.  Triggering 
can be set to occur at a specific threshold level, 
including selected modes of ± slope level high, and 
level low. 

  
Analog trigger channel An auxiliary analog channel, in addition to the 

analog input channels to be measured, which is 
used solely for an analog trigger signal. 

  
ANSI American National Standards Institute.  The 

principal organization developing standards in the 
USA.  Many of the ANSI standards are of great 
interest to the engineering and software fields. 



 


��������
������

�����	
��

 

AOI Area of interest. 
  
AppleTalk A proprietary computer networking standard 

initiated by Apple Computer for use in connecting 
the Macintosh range of computers and 
peripherals (including LaserWriter printers).  
This standard operates at 230 kilobits/second. 

  
Application layer The highest layer of the 7-layer OSI model 

structure, containing all user or application 
programs. 

  
Application program A sequence of instructions written to solve a 

specific problem facing organizational 
management.  These programs are normally 
written in a high-level language and draw on 
resources of the operating system and the 
computer hardware in executing its tasks. 

  
ARP Address resolution protocol.  A transmission 

control protocol/internet protocol (TCP/IP) 
process that maps an ID address to an Ethernet 
address; required by TCP/IP for use with 
Ethernet. 

  
ARQ Automatic request for transmission.  A request by 

the receiver for the transmitter to retransmit a 
block or a frame because of errors detected in the 
originally received message. 

  
ASCII American Standard Code for Information 

Interchange.  A universal standard for encoding 
alphanumeric characters into 7 or 8 binary bits.  
Drawn up by ANSI to ensure compatibility 
between different computer systems. 

  
Asynchronous Communications in which characters can be 

transmitted at an arbitrary, unsynchronized time, 
and where the time intervals between transmitted 
characters may be of varying lengths. 
Communication is controlled by start and stop 
bits at the beginning and end of each character. 

  
Attenuation The decrease in signal magnitude or strength 

between two points. 
  
Auto-ranging An auto-ranging board can be set to monitor the 

incoming signal and automatically select an 
appropriate gain level based on the previous 
incoming signals. 

  
Background program An application program that can be executed 

whenever the facilities of the system are not 
needed by a higher priority program. 

  



	

������������	����
����
������������
���������������������������
���
 

 

Back-plane A panel containing sockets into which circuit 
boards (such as I/O cards, memory boards and 
power supplies) can be plugged. 

  
Band pass filter A filter that allows only a fixed range of 

frequencies to pass through. All other frequencies 
outside this range (or band) are sharply reduced 
in magnitude. 

  
Bandwidth The range of frequencies available, expressed as 

the difference between the highest and lowest 
frequencies, in hertz (cycles per second, 
abbreviated Hz). 

  
Barcode symbol An array of rectangular parallel bars and spaces 

of various widths designed for the labeling of 
objects with unique identifications.  A bar code 
symbol contains a leading quiet zone, a start 
character, one or more data characters including, 
in some cases, a check character, a stop character, 
and a trailing quiet zone. 

  
Base address A memory address that serves as the reference 

point.  All other points are located by offsetting in 
relation to the base address. 

  
Baud Unit of signaling speed derived from the number 

of events per second (normally bits per second). 
However, if each event has more than one bit 
associated with it, the baud rate and bits per 
second are not equal. 

  
Baudot  Data transmission code in which five bits 

represent one character.  Sixty-four alphanumeric 
characters can be represented.  This code is used 
in many teleprinter systems with one start bit and 
1.42 stop bits added. 

  
Bell 212 An AT&T specification of full duplex, 

asynchronous or synchronous 1200 bps data 
transmissions for use on the public telephone 
network. 

  
BERT/BLERT Bit error rate/block error rate testing.  An error 

checking technique that compares a received data 
pattern with a known transmitted data pattern to 
determine transmission line quality. 

  
Binary coded decimal 
(BCD) 

A code used for representing decimal digits in a 
binary code. 

  
BIOS The basic input/output system for the computer, 

usually firmware-based.  This program handles 
the interface with the PC hardware and isolates 
the operating software (OS) from the low-level 



 


��������
������

�����	
��

 

activities of the hardware.  As a result, application 
software becomes more independent of the 
particular specifications of the hardware on which 
it runs, and hence more portable. 

  
Bipolar range, bipolar 
inputs 

A signal range that includes both positive and 
negative values.  Bipolar inputs are designed to 
accept both positive and negative voltages. 
Example: ±5 V. 

  
Bisynchronous 
transmission 

See BSC. 

  
Bits & bytes One bit is one binary digit, either a binary 0 or 1. 

One byte is the amount of memory needed to store 
each character of information (text or numbers). 
There are eight bits to one byte (or character), 
and there are 1024 bytes to one kilobyte (KB).  
There are 1024 kilobytes to one megabyte (MB).  
Data acquisition boards typically take 2-byte 
samples; a board acquiring data at a 20 kHz 
sample rate is actually gathering 40,000 bytes of 
data per second. 

  
Block In block-structured programming languages, a 

section of programming languages or a section of 
program coding treated as a unit. 

  
Bloom The bleeding of one color over another on a video 

screen.  This is often the result of the side-by-side 
presentation of strongly and weakly saturated 
colors. 

  
Border On a VGA display the border represents the area 

all around the visible image.  It is usually black. 
  
bps Bits per second.  Unit of data transmission rate. 
  
Broad band A communications channel that has greater 

bandwidth than a voice grade line and is 
potentially capable of greater transmission rates. 

  
BSC Bisynchronous transmission.  A byte- or 

character-oriented communication protocol that 
has become the industry standard (created by 
IBM).  It uses a defined set of control characters 
for synchronized transmission of binary coded 
data between stations in a data communications 
system. 

  
Bubble memory Describes a method of storing data in memory 

where data is represented as magnetized spots 
called magnetic domains that rest on a thin film of 
semiconductor material.  Used in high-vibration, 
high-temperature, or harsh industrial locations. 



	�
������������	����
����
������������
���������������������������
���
 

 

  
Buffer An intermediate temporary storage device used to 

compensate for a difference in data rate and data 
flow between two devices (also called a spooler for 
interfacing a computer and a printer). 

  
Bus A data path shared by many devices, with one or 

more conductors for transmitting signals, data or 
power. Also, the expansion connector built into a 
computer. Boards are inserted into this connector, 
and all communication between the computer and 
the board occurs through the computer’s bus.  
There are several different expansion buses 
available, including the XT, AT & Micro-Channel 
buses for IBM-compatible PCs and the NuBus for 
the Apple Macintosh II PC line. 

  
BW Bandwidth. 
  
Cache memory A fast buffer memory that fits between the CPU 

and the slower main memory to speed up CPU 
requests for data. 

  
CCD Charge-coupled device (camera). 
  
CCIR Comité Consultatif Internationale des 

Radiocommunications. 
  
CCITT Comite' Consultatif Internationale de Télégraph 

et Téléphone.  An international association that 
sets worldwide standards (for example, V.21, 
V.22, V.22 bis). 

  
CGA Color graphics adapter.  A computer standard 

utilizing digital signals offering a resolution of 320 
by 200 pixels, a palette of 16 colors. 

  
Character Letter, numeral, punctuation, control figure or 

any other symbol contained in a message. 
  
Chroma The amount and relative brightness of color (or 

hue) as measured in a video signal. 
  
Chrominance The color component of a video signal. 
  
Clock The source of timing signals for sequencing 

electronic events such as synchronous data 
transfer or CPU operation in a PC. 

  
Clock pulse  A rising edge, then a falling edge (in that order), 

such as applied to the clock input of an 8254 
timer/counter. 

  
CMRR Common mode rejection ratio – A board’s ability 

to measure only the voltage difference between the 



 


��������
������

�����	���

 

leads of a transducer, rejecting what the leads 
have in common. The higher the CMRR, the 
better the accuracy. 

  
Cold-junction 
compensation 

Thermocouple measurements can easily be 
affected by the interface the thermocouples are 
connected to. Cold-junction compensation 
circuitry compensates for inaccuracies introduced 
in the conversion process. The STT screw terminal 
panels feature a heavy isothermal plate for high-
accuracy cold-junction compensation. 

  
Cold-junction 
compensation channel 

This is an additional data acquisition input 
channel used exclusively for cold-junction 
compensation, leaving all of the standard input 
channels free to be used for data acquisition. The 
ACPC boards include this channel for increased 
accuracy and performance. 

  
Collector The voltage source in a transistor with the base as 

the control source and the emitter as the 
controlled output. 

  
Common carrier A private data communications utility company 

that furnishes communications services to the 
general public. 

  
Common mode rejection 
ratio 

A measure of the ability of an instrument to reject 
interference caused by a voltage common to its 
input terminals relative to ground, expressed in 
dB. 

  
Compiler A program to convert high-level source code (such 

as BASIC) to machine code-executable form, 
suitable for the CPU. 

  
Composite A video signal that contains all the intensity, color 

and timing information necessary for a video 
product. 

  
Composite link The line or circuit connecting a pair of 

multiplexers or concentrators; the circuit carrying 
multiplexed data. 

  
Contention The facility provided by the dial network or a data 

PABX that allows multiple terminals to compete 
on a first-come, first-served basis for a smaller 
number of computer ports. 

  
Control system A system in which a series of measured values are 

used to make a decision on manipulating various 
parameters in the system to achieve a desired 
value of the original measured values. 

  
Convolution An image enhancement technique in which each 



	��������������	����
����
������������
���������������������������
���
 

 

pixel is subjected to a mathematical operation that 
groups it with its nearest neighbors and calculates 
its value accordingly. 

  
Counter data register The 8-bit register of a (8254 chip) timer/counter 

that corresponds to one of the two bytes in the 
counter’s output latch for read operations and 
count register for write operations. 

  
Counter loading The transfer of a count from an 8254 

timer/counter’s count register to its counting 
element. 

  
Counter/timer trigger On-board counter/timer circuitry can be set to 

trigger data acquisition at a user-selectable rate 
and for a particular length of time. 

  
Counter/timers User-accessible circuitry built into many of the 

DAS boards that can be used for event counting or 
frequency measurement. 

  
CRC Cyclic redundancy check.  A basic error checking 

mechanism using a polynomial algorithm based 
on the content of the frame and then matched with 
the result that is performed by the transmitter 
and included in a field appended to the frame.  
Also referred to as CRC-16 or CRC-CCITT 

  
Crossed pinning Wiring configuration that allows two DTE or 

DCE devices to communicate.  Essentially it 
involves connecting pin 2 to pin 3 of the two 
devices. 

  
Crossover In communications, a conductor that runs 

through the cable and connects to a different pin 
number at each end. 

  
Crosstalk A situation where a signal from a 

communication’s channel interferes with an 
associated channel's signals. 

  
CSMA/CD Carrier sense multiple access/collision detection. 

When two stations transmit at the same time on a 
local area network, they both cease transmission 
and signal that a collision has occurred. Each then 
retries again after waiting for a random time 
period. 

  
Current inputs A board rated for current inputs can accept and 

convert analog current levels directly, without 
conversion to voltage. 

  
Current loop A communication method that allows data to be 

transmitted over a longer distance with a higher 
noise immunity level than with the standard RS-



 


��������
������

�����	�	�

 

232C voltage method.  A mark (a binary 1) is 
represented by current; and a space (or binary 0) 
is represented by the absence of current. 

  
Current sink This is the amount of current the board can 

supply for digital output signals.  With 10–12 mA 
or more of current sink capability, a board can 
turn relays on and off.  Digital I/O boards with 
less than 10–12 mA of sink capability are designed 
for data transfer only, not for hardware power 
relay switching. 

  
D/A Digital to analog. 
  
DAS Data acquisition system. 
  
Data integrity A performance measure based on the rate of 

undetected errors. 
  
Data reduction The process of analyzing a large quantity of data 

in order to extract some statistical summary of the 
underlying pattern. 

  
DCE Data communications equipment.  Devices that 

provide the functions required in establishing, 
maintaining and terminating a data transmission 
connection.  Normally it refers to a modem. 

  
Decibel A logarithmic measure of the ratio of two signal 

levels where dB = 20log10 V1/V2.  Being a ratio, it 
has no units of measure. 

  
Default A value or setup condition assigned automatically 

unless another is specified. 
  
Deviation A movement away from a required value. 
  
DFB Display frame buffer. 
  
Diagnostic program A utility program used to identify hardware and 

firmware defects related to the PC. 
  
Differential See Number of channels. 
  
Digital A signal that has definite states (normally two). 
  
Digitize The transformation of an analog signal to a digital 

signal. 
  
DILUT Double-input look-up table. 
  
DIP Acronym for dual in-line packages referring to 

integrated circuits and switches. 
  
DMA Direct memory access. A technique of transferring 



	��������������	����
����
������������
���������������������������
���
 

 

data between the computer memory and a device 
on the computer bus, without the intervention of 
the microprocessor. 

  
DR Dynamic range. The ratio of the full-scale range 

(FSR) of a data converter to the smallest 
difference it can resolve.  DR = 2n, where n is the 
resolution in bits. 

  
Drift A gradual movement away from the defined 

input/output condition over a period of time. 
  
Driver software A program that acts as the interface between a 

higher level coding structure and the lower level 
hardware/firmware component of a computer. 

  
DSR Data set ready.  An RS-232 modem interface 

control signal, which indicates that the terminal is 
ready for transmission. 

  
DTE Data terminal equipment.  Devices acting as data 

source, data sink, or both. 
  
Dual-ported RAM Allows acquired data to be transferred from on-

board memory to the computer’s memory while 
data acquisition is occurring. 

  
Duplex The ability to send and receive data 

simultaneously over the same communications 
line. 

  
DRAM Dynamic random access memory. See RAM. 
  
EBCDIC  Extended binary coded decimal interchange code. 

An 8-bit character code used primarily in IBM 
equipment.  The code allows for 256 different bit 
patterns. 

  
EEPROM Electrically erasable programmable read-only 

memory.  This memory unit can be erased by 
applying an electrical signal to the EEPROM and 
then reprogrammed. 

  
EGA Enhanced graphics adapter.  A computer display 

standard that provides a resolution of 640 by 350 
pixels, a palette of 64 colors, and the ability to 
display as many as 16 colors at one time. 

  
EIA Electronic Industries Association.  An 

organization in the USA specializing in the 
electrical and functional characteristics of 
interface equipment. 

  
  
  



 


��������
������

�����	���

 

EMI/RFI Electro-magnetic interference or radio frequency 
interference.  Background ‘noise’ capable of 
modifying or destroying data transmission. 

  
Emulation The imitation of a computer system performed by 

a combination of hardware and software that 
allows programs to run between incompatible 
systems. 

  
EPROM Read-only non-volatile semiconductor memory 

that is erasable in an ultra-violet light and is 
reprogrammable. 

  
Error The difference between the SetPoint and the 

measured value. 
  
Even parity A data verification method normally implemented 

in hardware in which each character must have 
an even number of ONE bits. 

  
External pulse trigger Many of the A/D boards allow sampling to be 

triggered by a voltage pulse from an external 
source. 

  
Fan in The load placed on a signal line by a logic circuit 

input. 
  
Fan out The measure of drive capability of a logic circuit 

output. 
  
FCC Federal Communications Commission (USA). 
  
FDM Frequency division multiplexer.  A device that 

divides the available transmission frequency range 
in narrower bands, each of which is used for a 
separate channel. 

  
Field One half of a video image (frame) consisting of 

312.5 lines (for PAL).  There are two fields in a 
frame.  Each is shown alternately every 1/25 of a 
second (for PAL). 

  
Firmware  A computer program or software stored 

permanently in FROM or ROM or semi-
permanently in EPROM. 

  
Floating ground  A device that is not attached to a ground and is 

considered as floating in a voltage sense and 
whose purpose is to avoid common mode 
problems. 

  
Flow control The procedure for regulating the flow of data 

between two devices, preventing the loss of data 
once a device’s buffer has reached its capacity. 

  



	��������������	����
����
������������
���������������������������
���
 

 

Frame A full video image comprising two fields.  A PAL 
frame has a total of 625 lines (an NTSC frame has 
525 lines). 

  
Frame grabber An image processing peripheral that samples, 

digitizes and stores a television camera frame in 
computer memory. 

  
Fringing The unwanted bordering of an object or character 

with weak colors when there should be a clearly 
delineated edge. 

  
Full duplex Simultaneous 2-way independent transmission in 

both directions (4-wire). 
  
Gain Amplification; applied to an incoming signal, gain 

acts as a multiplication factor on the signal, 
enabling a board to use signals that would 
otherwise be too weak.   For example, when set to 
a gain to 10, a board with a range of ±5 V can use 
raw input signals as low as ±0.5 V (±500 mV); 
with a gain of 20, the range extends down to    
±250 mV. 

  
Genlock This is the process of synchronizing one video 

signal to a master reference, ensuring that all 
signals will be compatible or related to one 
another. 

  
GPIB General purpose interface bus.  A standard bus 

used for controlling electronic instrumentation 
with a computer.  Also designated IEEE488. 

  
Graphics mode In graphics mode each pixel on a display screen is 

addressable, and each pixel has a horizontal (or X) 
and a vertical (or Y) coordinate. 

  
Gray scale In image processing, the range of available gray 

levels.  In an 8-bit system, the gray scale contains 
values from 0 to 255. 

  
Ground An electrically neutral circuit having the same 

potential as the earth.  A reference point for an 
electrical system also intended for safety purposes. 

  
Half duplex Transmissions in either direction, but not 

simultaneously. 
  
Handshake lines Dedicated signals that allow two different devices 

to exchange data under asynchronous hardware 
control. 

  
Handshaking Exchange of predetermined signals between two 

devices establishing a connection. 
  



 


��������
������

�����	���

 

Harmonic An oscillation of a periodic quantity whose 
frequency is an integral multiple of the 
fundamental frequency. The fundamental 
frequency and the harmonics together form a 
Fourier series of the original waveform. 

  
HDLC High-level data link control. The international 

standard communication protocol defined by ISO. 
  
Hexadecimal number 
system 

A base 16 number system commonly used with 
personal computers. 

  
High pass filter See HPF 
  
Histogram A graphic representation of a distribution 

function, such as frequency, by means of 
rectangles whose widths represent the intervals 
into which the range of observed values is divided 
and whose heights represent the number of 
observations occurring in each interval. 

  
HPF High pass filter.  A filter processing one 

transmission band that extends from a cutoff 
frequency (other than zero) to infinity. 

  
HPIB Hewlett-Packard Interface Bus; trade name used 

by Hewlett-Packard for its implementation of the 
IEEE 488 standard. 

  
I/O Address A method that allows the CPU to distinguish 

between different boards in a system.  All boards 
must have different addresses. 

  
IEEE Institute of Electrical and Electronic Engineers.  A 

US-based international professional society that 
issues its own standards and, which is a member 
of ANSI and ISO. 

  
Illumination component An amount of source light incident on the object 

being viewed. 
  
ILUT Input look-up table. 
  
Individual gain per channel A system allowing an individual gain level for 

each input channel, thereby allowing a much 
wider range of input levels and types without 
sacrificing accuracy on low-level signals. 

  
Interface A shared boundary defined by common physical 

interconnection characteristics, signal 
characteristics, and measuring of interchanged-
signals. 

  
Interlace This is the display of two fields alternately with 

one field filling in the blank lines of the other field 



	�
������������	����
����
������������
���������������������������
���
 

 

so that they interlock.  The PAL standard displays 
25 video frames per second. 

  
Interlaced Interlaced – describing the standard television 

method of raster scanning, in which the image is 
the product of two fields, each of which is a series 
of successively scanned lines separated by the 
equivalent of one line.  Thus adjacent lines belong 
to different fields. 

  
Interrupt An external event indicating that the CPU should 

suspend its current task to service a designated 
activity. 

  
Interrupt handler The section of the program that performs the 

necessary operation to service an interrupt when 
it occurs. 

ISA Instrument Society of America. 
  
ISO International Standards Organization. 
  
Isolation Electrical separation of two circuits.  For example, 

optical isolation allows a high-voltage signal to be 
transferred to a low-voltage input without 
electrical interactions. 

  
ISR Interrupt service routine. See Interrupt handler. 
  
Jumper A wire that connects a number of pins at one end 

of a cable. 
  

 
k Abbreviation of ‘kilo’, the SI prefix for ‘1000’.  

See also K. 
  
K In computer terminology, a K is 210 = 1024.  This 

distinguishes it from the SI unit k (kilo), which is 
1000. 

  
LAN Local area network.  A data communications 

system confined to a limited geographic area, 
typically about 10 km, with moderate to high data 
rates (100 kbps to 50 Mbps).  Some type of 
switching technology is used; but common carrier 
circuits are not used. 

  
LCD Liquid crystal display. A low-power display used 

on many portable PCs and instruments. 
  
LDM Limited distance modem. A signal converter that 

conditions and boosts a digital signal so that it 
may be transmitted further than a standard RS-
232 signal. 

  
  



 


��������
������

�����	���

 

Leased line (or private 
line) 

A private telephone line without inter-exchange 
switching arrangements. 

  
LED Light emitting diode.  A semi-conductor light 

source that emits visible light or infrared 
radiation. 

  
Line driver A signal converter that conditions a signal to 

ensure reliable transmission over an extended 
distance. 

  
Line turnaround The reversal of transmission direction from 

transmitter to receiver or vice versa when a half 
duplex circuit is used. 

  
Linearity A relationship where the output is directly 

proportional to the input.   
  
Link layer  Layer 2 of the OSI reference model; also known as 

the data link layer. 
  
Listener A device on the GPIB bus that receives 

information from the bus. 
  
Loaded line  A telephone line equipped with loading coils to 

add inductance in order to minimize amplitude 
distortion. 

  
Loopback  Type of diagnostic test in which the transmitted 

signal is returned to the sending device after 
passing through all, or a portion, of a data 
communication link or network.  A loopback test 
permits the comparison of a returned signal with 
the transmitted signal. 

  
Low pass filter  See LPF 
  
LPF Low pass filter.  A filter processing one 

transmission band, extending from zero to a 
specific cutoff frequency. 

  
LSB Least significant byte or least significant bit. 
  
Luminance The black and white portion of a video signal that 

supplies brightness and detail for the picture. 
  
LUT Look-up table.  This refers to the memory that 

stores the values for the point processes.  Input 
pixel values are those for the original image, 
whilst the output values are those displayed on the 
monitor as altered by the chosen point processes. 

  
Lux SI unit of luminous incidence of luminance, equal 

to one lumen per square meter. 
  



	�
������������	����
����
������������
���������������������������
���
 

 

Lux-second SI unit of light exposure. 
  
Manchester encoding Digital technique (specified for the IEEE 802.3 

Ethernet baseband network standard) in which 
each bit period is divided into two complementary 
halves.  A negative to positive voltage transition in 
the middle of the bit period designates a binary 1, 
whilst a positive to negative transition represents a 
0.  The encoding technique also allows the 
receiving device to recover the transmitted clock 
from the incoming data stream (self-clocking). 

  
MAP Manufacturing automation protocol.  A suite of 

networking protocols originated by General 
Motors which track the seven layers of the OSI 
model.  A reduced implementation is referred to 
as a miniMAP. 

  
Mark This is equivalent to a binary 1. 
  
Mask A structure covering certain portions of a 

photosensitive medium during photographic 
processing. 

  
Masking Programming technique for suppressing the use of 

certain bits in a register. 
  
Masking Setting portions of an image at a constant value, 

either black or white.  Also the process of 
outlining an image and then matching it to test 
images. 

  
Modem Modulator-demodulator.  A device used to convert 

serial digital data from a transmitting terminal to 
a signal suitable for transmission over a telephone 
channel or to reconvert the transmitted signal to 
serial digital data for the receiving terminal. 

  
Modem eliminator A device used to connect a local terminal and a 

computer port, in lieu of the pair of modems to 
which they would ordinarily connect, allowing 
DTE and DTE data and control signal 
connections, otherwise not easily achieved by 
standard cables or connections. 

  
Morphology The study of a structure/form of object in an 

image.  
  
MSB Most significant byte or most significant bit. 
  
Multidrop A single communication line or bus used to 

connect three or more points. 
  
  
  



 


��������
������

�����	���

 

Multiplexer  A technique in which multiple signals are 
combined into one channel.  They can then be de-
multiplexed back into the original components. 
With the addition of multiplexing panels, 64, 256, 
sometimes more, inputs can be fed to a single 16-
channel board.  This results in a slower sample 
rate (throughput), but allows very large data 
acquisition systems to be constructed 
economically. 

  
Multiplexer (mux) A device used for division of a communication link 

into two or more channels, either by using 
frequency division or time division. 

  
Negative true logic The inversion of the normal logic where the 

negative state is considered to be TRUE (or 1) and 
the positive voltage state is considered to be 
FALSE (or 0). 

  
Network An interconnected group of nodes or stations. 
  
Network architecture A set of design principles, including the 

organization of functions and the description of 
data formats and procedures, used as the basis for 
the design and implementation of a network 
(ISO). 

  
Network layer Layer 3 in the OSI model; the logical network 

entity that services the transport layer responsible 
for ensuring that data passed to it from the 
transport layer is routed and delivered 
throughout the network. 

  
Network topology The physical and logical relationship of nodes in a 

network; the schematic arrangement of the links 
and nodes of a network typically in the form of a 
star, ring or bus topology. 

  
NMRR Normal mode rejection ratio – The ability of a 

board to filter out noise from external sources, 
such as AC power lines.  NMRR filtering 
compensates for transient changes in the incoming 
signal to provide greater accuracy.  The higher the 
NMRR, the better the filtering of incoming data 
will be. 

  
Node  A point of interconnection to a network.  
  
Noise Undesirable interference superimposed upon a 

useful signal reducing its information content. 
  
NRZ Non-return to zero.  Pulses in alternating 

directions for successive 1 bits; no change from 
existing signal voltage for 0 bits. 

  



	��������������	����
����
������������
���������������������������
���
 

 

NTSC National Television System Committee (USA).  A 
television standard specifying 525 lines and 60 
fields per second. 

  
Null modem A device that connects two DTE devices directly 

by emulating the physical connections of a DCE 
device. 

  
Number of channels This is the number of input lines a board can 

sample.  Single-ended inputs share the same 
ground connection, while differential inputs have 
individual two-wire inputs for each incoming 
signal, allowing greater accuracy and signal 
isolation.  See also multiplexer. 

  
Nyquist sampling theorem In order to recover all the information about a 

specified signal, it must be sampled at least at 
twice the maximum frequency component of the 
specified signal. 

  
OCR Optical character recognition, optical character 

reader. 
  
OLUT Output look-up table. 
  
On-board memory Incoming data is stored in on-board memory 

before being dumped into the PC’s memory.  On a 
high-speed board, data is acquired at a much 
higher rate than can be written into PC memory, 
so it is stored in the on-board buffer memory. 

  
Optical isolation A means of connecting two networks without 

electrical continuity; uses optoelectronic 
transmitters and receivers. 

  
OR Outside radius. 
  
OSI Open systems interconnection.  A set of defined 

protocol layers with a standardized interface that 
allows equipment from different manufacturers to 
be connected. 

  
Output An analog or digital output control type signal 

from the PC to the external ‘real world’. 
  
Overlay One video signal superimposed on another, as in 

the case of computer-generated text over a video 
picture. 

  
Packet A group of bits (including data and call control 

signals) transmitted as a whole on a packet 
switching network.  Usually smaller than a 
transmission block. 

  
  



 


��������
������

�����	�	�

 

PAD Packet access device.  An interface between a 
terminal or computer and a packet switching 
network. 

  
PAL Phase alternating lines.  This is the television 

standard used in Europe and Australia.  The PAL 
standard is 25 frames per second with 625 lines. 

  
Parallel transmission The transmission model where multiple data bits 

are sent simultaneously over separate parallel 
lines. Accurate synchronization is achieved by 
using a timing (strobe) signal.  Parallel 
transmission is usually unidirectional; an example 
would be the Centronics interface to a printer. 

  
Parity bit A bit that is set to a 0 or 1 to ensure that the total 

number of 1 bits in the data field is even or odd. 
  
Parity check The addition of non-information bits that make up 

a transmission block to ensure that the total 
number of ONE bits is always even (even parity) 
or odd (odd parity) so that transmission errors 
can be detected. 

  
Passive device Device that must draw its power from connected 

equipment. 
  
Passive filter A circuit using only passive electronic components 

such as resistors, capacitors and inductors. 
  
Peripherals The input/output and data storage devices 

attached to a computer, such as disk drives, 
printers, keyboards, display, communication 
boards, etc. 

  
Phase modulation The sine wave or carrier has its phase changed in 

accordance with the information to be 
transmitted. 

  
PIA Peripheral interface adapter.  Also referred to as 

PPI (programmable peripheral interface). 
  
Pixel One element of a digitized image, sometimes 

called picture element, or pel. 
  
Point-to-point A connection between only two items of 

equipment. 
  
Polling A means of controlling I/O devices on a multipoint 

line in which CPU queries (‘polls’) the devices at 
regular intervals to check for data awaiting 
transfer (to the CPU).  Slower and less efficient 
than interrupt-driven I/O operations. 

  
  



	��������������	����
����
������������
���������������������������
���
 

 

Port A place of access to a device or network, used for 
input/output of digital and analog signals.  

  
PPI See PIA. 
  
Pre-trigger Boards with ‘pre-trigger’ capability keep a 

continuous buffer filled with data, so when the 
trigger conditions are met, the sample includes the 
data leading up to the trigger condition. 

  
Program I/O The standard method of memory access, where 

each piece of data is assigned to a variable and 
stored individually by the PC’s processor. 

  
Programmable gain Using an amplifier chip on an A/D board, the 

incoming analog signal is increased by the gain 
multiplication factor.  For example, if the input 
signal is in the range of –250 mV to +250 mV, the 
voltage after the amplifier chip set to a gain of 10 
would be –2.5 V to +2.5 V. 

  
PROM Programmable read only memory.  This is 

programmed by the manufacturer as a fixed data 
or program that cannot easily be changed by the 
user. 

  
Protocol A formal set of conventions governing the 

formatting and relative timing of message 
exchange between two communicating systems. 

  
Public switched network Any switching communications system – such as 

Telex and public telephone networks – that 
provides circuit switching to many customers. 

  
Pulse input A square wave input from a real world device 

such as a flow meter, which sends pulses 
proportional to the flow rate. 

  
RAM Random access memory.  Semiconductor 

read/write volatile memory.  There are two main 
types of semi-conductor-based memory, generally 
speaking: RAM (also called ‘volatile memory’) 
and ROM (also called ‘non-volatile memory’). 
RAM is divided into two further types: The first 
of these is ‘static’ RAM, or SRAM, which 
effectively consists of a series of flip-flop devices 
which can be set to a 1 or a 0 state.  Static RAM 
chips retain the stored values as long as the RAM 
chip remains powered up.  The second type of 
RAM is ‘dynamic RAM’ or DRAM.  A DRAM is 
effectively a series of capacitors which, depending 
on their charge, store a 0 or a 1. As capacitors lose 
their charge over time (within a few milliseconds 
in the case of a DRAM), each memory location 
needs to be refreshed every few milliseconds by 



 


��������
������

�����	���

 

dedicated electronic circuitry. In spite of this, 
DRAM chips are cheaper and consume less power 
than their static counterparts, and they are 
therefore used more extensively in modern PCs. 

  
RAMDAC Random access memory digital-to-analog 

converter. 
  
Range The difference between the upper and lower limits 

of the measured value.  
  
Range select The full-scale range a board uses is selected by one 

of three methods: through the DAS software, by a 
hardware jumper on the board, or through the 
use of an external reference voltage. 

  
Range select The feature on a board (either via software, or by 

hardware DIP switch or jumper) to change the 
incoming analog or output analog range voltage 
range. 

  
Raster The pattern of lines traced by rectilinear scanning 

in display systems. 
  
Real-time A system is capable of operating in real-time when 

it is fast enough to react to the real-world events. 
  
Reflectance component The amount of light reflected by an object in the 

scene being viewed. 
  
Refresh rate The speed at which information is updated on a 

computer display (CRT). 
  
Resolution The number of bits in which a digitized value will 

be stored.  This represents the number of divisions 
into which the full-scale range will be divided; for 
example, a 0–10 V range with a 12–bit resolution 
will have 4096 (212) divisions of 2.44 mV each     
(10 V/212 or 10 V/4096). 

  
Resolution The number of pixels that may be displayed on a 

monitor screen. 
  
Response time The elapsed time between the generation of the 

last character of a message at a terminal and the 
receipt of the first character of the reply.  It 
includes terminal delay and network delay. 

  
RGB Red/green/blue.  An RGB signal has four separate 

elements; red/green/blue and sync. This results in 
a cleaner image than with composite signals due to 
the lower level of distortion and interference. 

  
  
RLE Run length encoder.  A digital image method 



	��������������	����
����
������������
���������������������������
���
 

 

whereby the first gray level of each sequential 
point-by-point sample and its position in the 
succession of gray levels is encoded. It is used 
where there is a tendency for long runs of 
repeated digitized gray levels to occur. 

  
ROI Region of interest. 
  
ROM Read-only memory.  Computer memory in which 

data can be routinely read, but written to only 
once using special means when the ROM is 
manufactured.  The ROM is used for storing data 
or programs on a permanent basis. 

  
RS Recommended standard, for example, RS-232C. 

More recent designations use EIA, for example, 
EIA-232C. 

  
RS-232C Interface between DTE and DCE, employing 

serial binary data exchange.  Typical maximum 
specifications are 50 feet at 19200 baud. 

  
RS-422 Interface between DTE and DCE, employing the 

electrical characteristics of balanced voltage 
interface circuits. 

  
RS-423 Interface between DTE and DCE, employing the 

electrical characteristics of unbalanced voltage 
digital interface circuits. 

  
RS-449 General purpose 37-pin and 9-pin interface for 

DCE and DTE employing serial binary 
interchange. 

  
RS-485 The recommended standard of the EIA that 

specifies the electrical characteristics of drivers 
and receivers for use in balanced digital 
multipoint systems. 

  
RTSI bus The real-time system integration bus is an 

additional connector present on some DAS 
boards, allowing two or more of these boards to be 
connected together.  It allows the boards to share 
data, timing and interrupt information, at DMA 
transfer rates of up to 2.4 MB per second, leaving 
the PC bus free for other bus operations. 

  
S-Video The luminance and chrominance elements of a 

video signal are isolated from each other, resulting 
in a far cleaner image with greater resolution. 

  
Simultaneous sampling The ability to acquire and store multiple signals at 

exactly the same moment.  Sample-to-sample 
inaccuracy is typically measured in nanoseconds.  
The PC-30DS board simultaneously samples 16 



 


��������
������

�����	���

 

signals to within ±20 ns. 
  
SDLC Synchronous data link control.  IBM standard 

protocol superseding bisynchronous. 
  
Self-calibrating A self-calibrating board has an extremely stable 

on-board reference that is used to calibrate A/D 
and D/A circuits for higher accuracy. 

  
Self-diagnostics On-board diagnostic routine, which tests most, if 

not all, of a board’s functions at power-up or on 
request. 

  
Serial transmission The most common transmission mode, in which 

information bits are sent sequentially over a single 
data channel. 

  
Shielding The process of protecting an instrument or cable 

from external noise (or sometimes protecting the 
surrounding environment of the cable from 
signals within the cable). 

  
Short haul modem A signal converter which conditions a digital 

signal to ensure reliable transmission over DC 
continuous private line metallic circuits, without 
interfering with adjacent pairs of wires in the 
same telephone cables. 

  
Shutter A mechanical or electronic device used to control 

the amount of time a light-sensitive material is  
 exposed to radiation. 
  
SI International metric system of units (Systéme 

Internationale). 
  
Signal conditioning Pre-processing of a signal to bring it up to an 

acceptable quality level for further processing by 
a more general purpose analog input system. 

  
Signal-to-noise ratio The ratio of signal strength to the level of noise. 
  
Signal-to-noise ratio The ratio of the signal amplitude to the noise 

amplitude (generally both signal and noise 
voltages are expressed in volts). 

  
Simplex transmission Data transmission in one direction only. 
  
Single-ended See Number of channels. 
  
Smart sensors A transducer (or sensor) with an on-board 

microprocessor to pre-process input signals to the 
transducer. It also has the capability of 
communicating digitally back to a central control 
station. 

Software drivers Typically a set of programs or subroutines 



	�
������������	����
����
������������
���������������������������
���
 

 

allowing the user to control basic board functions, 
such as setup and data acquisition. These can be 
incorporated into user-written programs to create 
a simple but functional DAS system. Many boards 
come with drivers supplied. 

  
Software trigger Software control of data acquisition triggering. 

Most boards are designed for software control. 
  
Space  Absence of signal.  This is equivalent to a binary 

zero. 
  
Spatial filtering In image processing, the enhancement of an image 

by increasing or decreasing its spatial frequencies. 
  
Spatial resolution A measure of the level of detail a vision system can 

display.  The value, expressed in mils or inches per 
pixel, is derived by dividing the linear dimensions 
of the field of view (x and y, as measured in the 
image plane), by the number of pixels in the x and 
y dimensions of the system’s imaging array or 
image digitizer. 

  
Speed/typical throughput The maximum rate at which the board can sample 

and convert incoming samples. The typical 
throughput is divided by the number of channels 
being sampled, to arrive at the samples/second on 
each channel. To avoid false readings, the samples 
per second on each channel need to be greater 
than twice the frequency of the analog signal 
being measured. 

  
Statistical multiplexer Multiplexer in which data loading from multiple 

devices occurs randomly throughout time, in 
contrast to standard multiplexers where data 
loading occurs at regular predictable intervals. 

  
Straight through pinning RS-232 and RS-422 configuration that match DTE 

to DCE (pin 1 with pin 1, pin 2 with pin 2, etc). 
  
Strobe A handshaking line used to signal to a receiving 

device that there is data to be read. 
  
Switched line A communication link for which the physical path 

may vary with each use, such as the public 
telephone network. 

  
Sync A sync, pulse ensures that the monitor displaying 

the information is synchronized at regular 
intervals with the device supplying the data, thus 
displaying the data at the right location. E.g. a 
sync pulse would be used between a camera and a 
display device to reset the image to the top of the 
frame for the beginning of the image. 

Synchronization The co-ordination of the activities of several 



 


��������
������

�����	���

 

circuit elements. 
  
Synchronous transmission Transmission in which data bits are sent at a fixed 

rate, with the transmitter and receiver 
synchronized. Synchronized transmission 
eliminates the need for start and stop bits. 

  
Talker A device on the GPIB bus that simply sends 

information onto the bus without actually 
controlling the bus. 

  
TCP/IP Transmission control protocol/internet protocol. 

The collective term for the suite of layered 
protocols that ensures reliable data transmission 
in an internet (a network of packet-switching 
networks functioning as a single large network).  
Originally developed by the US Department of 
Defense in an effort to create a network that could 
withstand an enemy attack. 

  
TDM Time division multiplexer. A device that accepts 

multiple channels on a single transmission line by 
connecting terminals, one at a time, at regular 
intervals, interleaving bits (bit TDM) or 
characters (character TDM) from each terminal. 

  
Text mode Signals from the hardware to the display device 

are only interpreted as text characters, leading to 
a maximum resolution defined by the number of 
characters across a screen by the number of 
vertical lines. Text mode can be faster than 
graphics mode, but the resolution and the type of 
graphics that can be displayed are limited by the 
text character set. 

  
Thresholding The process of defining a specific intensity level 

for determining which of two values will be 
assigned to each pixel in binary processing. If the 
pixel’s brightness is above the threshold level, it 
will appear in white in the image, if it is below the 
threshold level, it will appear black. 

  
Time sharing A method of computer operation that allows 

several interactive terminals to use one computer. 
  
Transducer Any device that generates an electrical signal from 

real-world physical measurements.  Examples are 
LVDTs, strain gauges, thermocouples and RTDs.  
A generic term for sensors and their supporting 
circuitry. 

  
Transient An abrupt change in voltage of short duration. 
  
  
Trigger A rising edge at an 8254 timer/counter’s gate 



		
������������	����
����
������������
���������������������������
���
 

 

input. 
  
Trunk A single circuit between two points, both of which 

are switching centers or individual distribution 
points.  A trunk usually handles many channels 
simultaneously. 

  
UART Universal asynchronous receiver transmitter.  An 

electronic circuit that translates the data format 
between a parallel representation within the 
computer and the serial method of transmitting 
data over a communication line. 

  
Unipolar inputs  When set to accept a unipolar signal, the channel 

detects and converts only positive voltages. 
(Example: 0 to +10 V). 

  
Unloaded line  A line without loaded coils that may therefore 

suffer line loss at audio frequencies. 
  
V.35 CCITT standard governing the transmission at  

48 Kbps over 60 to 108 kHz group band circuits. 
  
VGA Video graphics array.  This standard utilizes 

analog signals only (between 0 and 1 V) offering a 
resolution of 640 by 480 pixels, a palette of 256 
colors out of 256000 colors and the ability to 
display 16 colors at the same time. 

  
Vidicon A small television tube originally developed for 

closed-circuit television.  It is about one inch   
(2.54 cm) in diameter and five inches (12.7 cm) 
long.  Its controls are relatively simple and can be 
operated by unskilled personnel.  The Vidicon is 
widely used in broadcast service. 

  
Volatile memory A storage medium that loses all data when power 

is removed. 
  
VRAM Volatile random access memory.  See RAM 
  
Wedge filter An optical filter so constructed that the density 

increases progressively from one end to the other, 
or angularly around a circular disk. 

Word The standard number of bits that a processor or 
memory manipulates at one time.  Typical words 
are 16 bits. 

  
X-ON / X-OFF Control characters used for flow control, 

instructing a terminal to start transmission (X-
ON) and end transmission (X-OFF). 

  
  
  
X.21 CCITT standard governing interface between 



 


��������
������

�����		��

 

DTE and DCE devices for synchronous operation 
on public data networks. 

  
X.25 CCITT standard governing interface between 

DTE and DCE device for terminals operating in 
the packet mode on public data networks. 

  
X.25 Pad A device that permits communication between 

non-X.25 devices and the devices in an X.25 
network. 

 



Appendix B  

���������	�	
��
�
���
��	�

The information in this section is useful for programmers and for users who need to trou-
bleshoot their system. The following specifications are included in this section: 

• Hardware interrupts 

• DMA channels 

• 8237 DMA controller 

• 8259 Interrupt controller 

• 8253/8254 Counter/timer 

• Address information 

• Bus signal information 

• Card dimensions 

• Centronics interface standard 

B.I Hardware interrupts 
 

����� ���	� 
���
�������

���� �� ���
����

�� �� �
�����

�� �� ����������

� !"� #�  �	��$���%&�'(�)��*���+%#�'�

� !,� �� �-�����./0��

� !1� �� �-�����./0��

� !+� /� 2�����
	3�%&�'(�0���%#�'�



���������	�
��	��
����������������������,,,�

� !4� 5� 6)�

���
	3�

� !7� 6� 0���

%���������������
�����������

� !�� 7��  ��)��
����)��3�

� !�� 7��  ���
����������� !"�

� !��� 7"� 8��		
9����

� !��� 7,� 8��		
9����

� !�"� 71� 8��		
9����

� !�,� 7+� ��"�7����
����		���

� !�1� 74� 2�����
	3�

� !�+� 77� 8��		
9����

����

�������
����������������������������������
�������
������� ���������������

����

Table B.1 
Hardware interrupts 

B.2 DMA channels 
 

!������� "�����

�� ������������	:�

�� ./0��

"� 6)�

���
	3�

,� 8��		
9����

� �

1� 8��		
9����

+� 8��		
9����

4� 8��		
9����

7� 8��		
9����

Table B.2 
DMA channels 

B.3 8237 DMA channels 
 

#����
������
� �$%����
����

�:����)���%#�'� ��7�

�:����)��� ��,�

�:����)�"� ����

�:����)�,� ��"�

Table B.3 
Controller 1: 8-bit (ports 000–00F) 



,,1��
������������������������������������������������������������������

 

#����
������
� �$%����
����

�:����)�+� ����

�:����)�4� ����

�:����)�7� ��#�

Table B.4 
Controller 2: 16-bit (AT only – ports 0C0–0DF) 

&��
����'����()*�

Controller registers: 
 

!���
����
����
����

+� ,�

!�������������

���� ���� �:����)��;1���	��<��������������		�

���� ��"� �:����)��;1���	��<���������=����

������

��"� ���� �:����)��;1���	��<��������������		�

��,� ��4� �:����)��;1���	��<���������=����

������

��1� ���� �:����)��;1���	��<��������������		�

��+� ��#� �:����)��;1���	��<���������=����

������

��4� ���� �:����)��;1���	��<��������������		�

��7� ��5� �:����)��;1���	��<���������=����

������

���� �/��  ����	����	;=�
�������������9
	����

���� �/"� >�
�����?��	����9
	����

��#� �/1� >�
���	
�9)����	3���9
	�����
��

���� �/4� >�
����������9
	����

���� �/�� �)���������
�
������)

;�)�
�

��/� �/#�  �������
���9
	���;=�
�����	�����)����

��5� �/�� �)������	3���9
	����

��6� �/5� >�
����))���	3���9
	�����
�	�

Table B.5 
DMA controllers 

B.4 8259 Interrupt controller 

The 8259 programmable interrupt controller accesses an internal register set through two 
I/O ports. The 8259 is initialized by loading up to a 4-byte configuration sequence. It then 



���������	�
��	��
����������������������,,+�

responds in an operation mode. Configuration bytes may vary somewhat, due to hardware 
implementations. The port usage shown below is in the operation mode. 

Interrupt controller #1 ports are 20–21  

Interrupts are positive-edge sense. 

Port 20 is used to acknowledge and re-enable the 8259 

To send non-specific end-of-interrupt code: 

mov al,mask  

out 20h,al 

Port 21 is used to set/clear the masking register  

A mask bit = 0=> enable, 1 => disable a specific IRQ 

To read interrupt mask register  

in al,21h   bit 7 – 0 = IRQ 7 – 0 

To write interrupt mask register  

mov al,mask 

out 21h,al 

For 8259 #2 (AT only) 

Interrupt controller #1 ports are A0–A1 

Interrupts are positive-edge sense. 

Port A0 is used to acknowledge and re-enable the 8259 

To send non-specific end-of-interrupt code: 

mov al,20h  

out A0h,al 

Port A1 is used to set/clear the masking register  

A mask bit = 0 = > enable,  1=> disable a specific IRQ 

To read interrupt mask register  

in al,A1h    bit 7 - 0 = IRQ 15 - 8 

To write interrupt mask register  

mov al,mask  

out A1,al 

 



,,4��
������������������������������������������������������������������

B.5 8253/8254 Counter/timer 
 

#�
�� -������� 
���
�������

1�� ����������  ��)��
����)��3��
�3�

������@��6666:�

-��
������� !���$����+,��	�

%��*"��
�3	�
���	�����'�

1�� ���������� / #�������	:�������@����":�

 ����	:�)�9
��%#�'��

% ����	:��

��A��$�����+�

�	��'�

1"� ��������"� .
��3����	�
))�����

1,� ������)���9
	���� �

� �
��7(�4� .�)�������������(��(�"�

� �
��+(�1� 0���:(�0.�(��.�(�0.���.��

� �
��,(�"(��� �����

� ��B��������
����������� �

� ��B�-���	:��� �

� "�B� ����9��������� �

� ,�B�.?�����=�$��

9���������

�

� 1�B���
99�����	������%	;='� �

� +�B���
99�����	������%:;='� �

� �
���� �
����;��/������
�9�

Table B.6 
8253/8254 Counter/timer 



���������	�
��	��
����������������������,,7�

 

&������
� #�
�� &���	� .� /� 0� 1� 2� ,� +� (�

/#�#� �#C�� �� �
��7� �
��4� �
��+� �
��1� �
��,� �
�"� �
���� �
����

/00� �#C�� �� �����

�����

D���

0.��

/
$
��� ������

%/0#�@�'�
� � � �

/02� �#C�� �� �����

�����

D���

�.��

/
$
��� ������

%/0#�@�'�
� � � �

�5 � �#C�� �� �� �� �� B� ������


��������
 &�)
���


��������

� �

�� � �#C"� "� �� �� �� �� �� #��
$��


������
��

�
����

#��
$��


������
��

�
����

�������
��


���
�9�

0� � �#C,� ,� /0#���

�
$
	�

���

)���:�

�
��

.���

����3�

���
���

�����

�
��"�

���
���

������
��

��

���
���

�����

�
����

.��
��
��

)��9�:�

�
����

�:���

)��9�:��

�
����

�:���

)��9�:��

�
����

�� � �#C1� 1� �� �� �� 0��
�

���3�

B-8�"� �� B �.� B/� �

0. � �#C+� +� �� �5��� �2 5� ����3� 6���
�9� ���
��� -$������  A ���

�. � �#C4� 4� /�/�  �� /. � ��.� //�/� �5 �� //. � /��.�

.� � �#C7� 7� � � � � � � � �

3��4�3�������
���� !%5+�3��4�2*)����� !%5,�4�,*)�����

� !%52�3��4�26)� !%51�3��4�,6)�

Table B.7 
8250 registers 

 
 



,,���
������������������������������������������������������������������

 
666666�

�������

#���A��������������%�+��'�

�

�

66666�

6�����

 -��

�

�

56666�

5�����

-�5��
����;&��%41��'� �

/6666�

/�����

 �����������)����
�������

E0��E�

5A
�������������%41��'�

�

��666�

������

6
A����
	3(�&����)��%"���'�

%.������)���*7'�

�

�7666�  -���A
��	
���%"4��'�

%.������)���*4'�

�

�,666� -�5��%�4��'�

�

5D#�	������������	�

���� -��

#6666�

#�����

-�5��%41��'�

�

5D#�	������������	�

���� -��

#6666�

#�����

-�5��%41��'�

�

5D#�	������������	�

���� -��

�6666�

������

�"���� #���A
��	
��������

�

�

76666� +�"��� #���A
��	
��������

�

�

��1��� /-.�%.������)���*1'�

��-.�%.������)���*,'�

�

��,66� �������
��$�����	�

%.���6
9�����*"'�

�

Table B.8 
Memory map for PC/XT/AT 



���������	�
��	��
����������������������,,��

 
�����B����,� @� �������
���(��
$
������F����������

����1B����7� @� �������
���(�	
�9)��	��
��
����
���,�4�/���9�

5A��
�
��� � �

�����B������ @� �������
��"(�������	3��)��
������
��

�����B����6� @� �������
��,(�����3�
�
���

�����B����,� @� �������
��1(���
�:���
���$���)�=�

����1B����7� @� �������
��+(���-.�
�
���	����������
���

�����B������ @� �������
��4(���	��$���

�����B����6� @� �������
��7(���	��$���

���"�B���",� @� �������
���(�:���=�����
������*";	���

���"1B���"7� @� �������
���(�3��������

���"�B���"�� @� �������
��#(���	��$���

���"�B���"6� @� �������
���(�������
���
��	�

���,�B���,,� @� �������
���(�������
���
��	�

���"1B���,7� @� �������
��/(��)��������
�
�����

���,�B���,�� @� �������
��5(��)�

���
	3�������	
9��)�

���,�B���,6� @� �������
��6(�
�
�����������)�

���1�B���1,� @� �������
����(�
�$�3�	���-.�$
�����;-�	��$
�������
���

���11B���17� @� �������
����(�
�$�3�	���-.��?�

���������
9����
����)��3�

���1�B���1�� @� �������
���"(�
�$�3�	���-.��������	
F���:��3�

���1�B���16� @� �������
���,(�
�$�3�	���-.��
	3��;-�	��$
�������
�������
��	�

���+�B���+,� @� �������
���1(�
�$�3�	���-.� .�","��;-�����
��	�

���+1B���+7� @� �������
���+(�
�$�3�	���-.���		����(��;-(��A�������#��	��$
���

����
��	�

���+�B���+�� @� �������
���4(�
�$�3�	���-.�3���������;-�����
���

���+�B���+6� @� �������
���7(�
�$�3�	���-.�
�
������;-�

���4�B���4,� @� �������
����(� -���#.���

���41B���47� @� �������
����(�
�$�3�	���-.������	���
�	������
�����
���

���4�B���4�� @� �������
���#(�
�$�3�	���-.��
��������������
��	�

���4�B���46� @� �������
����(���-.����)�����3�������)�

���7�B���7,� @� �������
����(�9�������
�����)��3��
�3�

���71B���77� @� �������
���/(�$
����
�
�
�)
F��
���������)�
�����
�
�����

���7�B���7�� @� �������
���5(��
	3�
������������)��
�
�����

���7�B���76� @� �������
���6(�9��
:
�	��:�����������)��
�
�����

�����B����,� @� �������
��"�(�
�$�3�	�/-.�
��9��������
���
���

����1B����7� @� �������
��"�(�
�$�3�	��))�/-.������
�����))	�

�����B������ @� �������
��""(��	����������(�/-.�������))���
������
������
���
�$�3���

���
��9��������

�����B����6� @� �������
��",(��	����������(�/-.�������))���
������
������
���
�$�3���

���3������������3�

�����B����,� @� �������
��"1(��	����������(�/-.�������))���
������
������
���
�$�3���

�����
�
��)�������

����1B����7� @� �������
��"+(�
�$�3�	�/-.���	�)�����
	3������	��$
���

�����B������ @� �������
��"4(�
�$�3�	�/-.���	�)�����
	3�=�
���	��$
���



,1���
������������������������������������������������������������������

�����B����6� @� �������
��"7(����	�
��9��������3��
	�
��9����
���������������

/-.�

���#�B���66� @� �������
�	�"���:���9:�,6(���	��$���

�����B����,� @� �������
��1�(��
	3��;-�%&�'�

����1B����7� @� �������
��1�(��
A����
	3�
��������	�%&�'�

�����B���",� @� �������
��1���:���9:�1�(���	��$���

���"1B���"7� @� �������
��1�(�3��������	�

)����������	)��
������)��
�
�����

���"�B���76� @� �������
��1���:���9:�+6(���	��$���

�����B����6� @� �������
��4���:���9:�47(��	������
����
������
�	�

��������������������������������������������������������������������������������������

��������� !��������� "#�

���������� "����������������������������������������

���#�B���66� @� �������
��4���:���9:�76(������	���

��"��B��"�7� @� �������
������:���9:��+(���	��$��������#.���

��"��B��,�,� @� �������
���4��:���9:�6�(��#.���
����
������

��,�1B��,66� @� �������
��6���:���9:�66(������	���

Table B.9 
Interrupt vectors 

 
��1��B��1��� @� #����		���� .�","����
������

��1�"B��1�,� @� #����		���� .�","����
����"�

��1�1B��1�+� @� #����		���� .�","����
����,�

��1�4B��1�7� @� #����		���� .�","����
����1�

��1��B��1��� @� #����		����
�
��������
������

��1�#B��1��� @� #����		����
�
��������
����"�

��1��B��1�/� @� #����		����
�
��������
����,�

��1�5B��1�6� @� #����		����
�
��������
����1�

��1�/B��1��� @� 5?�

������)�9�

��1�"� @� ����������
�9���	��
��
������

��1�,B��1�1� @� 8	���)���������	
F��
����

��1�+B��1�4� @� �������
���;-��:����)�����41���B�
)��������

��1�7B��1��� @� ���������	����	��
�	�

��1��� @� #)��������3�������������
��
�
���%��������	�'�

��1�#B��1��� @� ����������������:����
�
�����

��1��B��1�/� @� ������������������
)�
�
�����

��1�5B��1,/� @� ����������������

��1,5� @� 6)�

���
	3�	��3�	����	�

��1,6� @� 6)�

���
	3�������	����	�

��11�� @� 6)�

���
	3��������
������

��11�� @� 6)�

���
	3�	����	�

��11"B��11�� @� 6)�

���
	3�������))���	����	�����	�

�11�� @� � ������������

��11#B��11�� @� � ����)����	������=
��:�

��11�B��11/� @� � ����9������
����������)��9�:�



���������	�
��	��
����������������������,1��

��115B��116� @� .����
�9������		�
����9������
����������

��1+�B��1+�� @� ���	���
�	
�
�������� ��
�9����

��1+"B��1+,� @� ���	���
�	
�
�������� ��
�9��"�

��1+1B��1++� @� ���	���
�	
�
�������� ��
�9��,�

��1+4B��1+7� @� ���	���
�	
�
�������� ��
�9��1�

��1+�B��1+�� @� ���	���
�	
�
�������� ��
�9��+�

��1+#B��1+�� @� ���	���
�	
�
�������� ��
�9��4�

��1+�B��1+/� @� ���	���
�	
�
�������� ��
�9��7�

��1+5B��1+6� @� ���	���
�	
�
�������� ��
�9����

��14�B��14�� @� ���	��������

��14"� @� #��
$��
�9���������

��14,B��141� @� #����		�������������
	
)������
����

�14+� @� � �������

��144� @� ��)�����	���
�9�

��147B��14�� @� �
���������

��14�B��14#� @� � ����9
	����

��14�� @� 0�	��
�
���$�)���

��14�B��14/� @� 0�=�=��������
����������

��145B��146� @� 2
9:�=��������
����������

��17�� @� �
������$�)$���

��1��B��1�6� @� 8	�������-/5��-��

��17�� @� ����3�
��
������

��17"B��17,� @�  ������%#)�����)�/�)'�
��
������

��171B��177� @� 6
A����
	3�����������%&�'�

��17�� @� ��
��������
������%&�'�

��17�� @� ��
�����"��
������%&�'�

��17#� @� ��
�����,��
������%&�'�

��17�� @� ��
�����1��
������%&�'�

��17�� @�  .�","���������
������%&�'�

��17/� @�  .�","������"��
������%&�'�

��175� @�  .�","������,��
������%&�'�

��17� @�  .�","������1��
������%&�'�

��1��B��1�,� @� #��
�
���)�3���������������
�
����	�%&�'�

�1�1B��1#�� @� 5D#���-.��������

��1�1� @� �����������:����������=	�

��1�+� @� ����	�
����:��������

��1�7� @� .����	������

��1��� @� 6��������
�	(�/���	=
��:�	�

��1#�� @� ��
�����	�$��

��1/�B��156� @�  �	��$���

��16�B��166� @� �������

)
���
���������
���
��������

Table B.10 
BIOS data area 



,1"��
������������������������������������������������������������������

 
��+��� @� ��
���	������	����	�

��+�1� @� .
�9)����
$��	����	�%��
$��#�����'�

��+��B��+��� @� �#.��G	������)�������	�9�����
�
�����

��+�"B��+�,� @� ��������#.��G	��
����
������
��$������

��+�1B��+�+� @� �.������#.��G	��
����
������
��$������

��+�4B��+�7� @� ��������#.��G	����)�����3�
������
��

��+��B��+��� @� �.������#.��G	����)�����3�
������
��

��+�#B��+��� @� ��������#.��G	�����)�������
������
��

��+��B��+�/� @� �.������#.��G	�����)�������
������
��

��4��B&&&&&� @� /-.�����H��:����:
�9	G�

Table B.11 
DOS and BASIC data area 

 

76666� @� ��
����+�"���

�����B�6666� @� #�(��"���� #���A
��	
��������

�6666� @� ��
����41���(����������������A
��	
��������

Table B.12 
RAM expansion area 

 
 
#����B#6666� @� 5�:������9��
:
�	����
����%5D#'�	������������	��

�����B�7666� @� �����:��������
�������5D#�

�����B��666� @� �����:�����	�������������

�����B�7666� @�  �	��$�������	������������	�

�����B��666� @� ��)��;9��
:
�	����
����%�D#'����5D#�

�����B��666� @� �D#��������

�����B�6666� @� �D#;5D#�	������������	�

�����B�,666� @� 5D#���-.�

Table B.13 
CRT screen buffers 

 
�1���B�7666� @�  -���A
��	
��������

�����B��666� @� 6
A����
	3�������)�%&�'�

�/���B�6666� @� 8	���� -�(����������

����;-�

/����B/6666� @� 8	���� -�*�������������E0��E�)����
���

5����B56666� @�  -���A
��	
�������(��
�
���)��;-�������;&��

Table B.14 
User area 

 



���������	�
��	��
����������������������,1,�

 
 
6����B6/66� @�  -���#.���

65���B666/�� @� ��-.�

6666�B66661�� @� 6
�	��������A�������������
�=������

6666+B6666�� @� ��-.���)��	�������

66665B66666� @� ���:
����/�

Table B.15 
ROM 

 
������B666666���@� �;-��:����)��������%��;#���A�������������(��+������A
���'�

Table B.16 
AT extended memory 

 

���B��6� @� /�#�������))���%�",7#'�

�"�B�"�� @� �������
��������))���%�"+�#'�

�1�B�1,� @� �
����%�"+,'�

�4�B�4,� @� ����%�"++#'�

���B��,� @� /�#�
�9����9
	����%710.4�"'�

�#�� @� ������	3���9
	����

"��B"�6� @� I��	�
�3�%9����������))��'�

"��B"�7� @� 5A
��	
�����
��

"6�B"66� @� .��
�)�
����%	��������'�

,��B,�6� @� �������
�������

,"�B,"6� @� 6
A����
	3�

,7�B,76� @� ����))�)�
�
�����%
�
����'�

,��B,�6� @� ./0��

,��B,�6� @� �����:��������
���;
�
�����

,/�B,/7� @� ��)��;9��
:
�	����
����

,6�B,67� @� /
	3�����������))���

,6�B,66� @� .��
�)�
����%
�
����'�

Table B.17 
IBM PC/XT I/O map 



,11��
������������������������������������������������������������������

 

���B��6� @� /�#�������))���%�",7#�+'�

�"�B,�6� @� �������
��������))���%�"+�#'�

�1�B�+6� @� �
����%�"+1'�

�4�B�46� @� ���������%��1"'�

�7�B�76� @� ������	3���9
	���(����)��
����)��3�

���B��6� @� /�#�
�9����9
	����%710.4�"'�

�#�B��6� @� �������
��������))���"�%�"+�#'�

���B�/6� @� /�#�������))���"�%�",7#'�

�6�B�66� @� ���:����
����		���

�6�B�6�� @� 6
A����
	3�

"��B"�7� @� I��	�
�3�%9����������))��'�

"+�B"+6� @� ����)�H���$�������G�

"7�B"76� @� ����))�)�
�
�����%	��������'�

,��B,�6� @� �������
�������

�4�B,46� @�  �	��$���

,7�B,76� @� ����))�)�
�
�����%
�
����'�

���B,�6� @� ./0������
	���:�����	�������
���
��	�%	��������'�

,#�B,#6� @� �
	���:�����	�������
���
��	�%
�
����'�

,��B,�6� @� �����:��������
���;
�
�����

,��B,�6� @� 5D#(���	��$���

,/�B,/6� @� ��)��;9��
:
�����
����

,6�B,67� @� /
	3�����������))���

,6�B,66� @� .��
�)�
����%
�
����'�

Table B.18 
IBM I/O map 

B.6 Bus signal information 

PC 62-pin connector (bracket end of board) 
 
D������ ←� ��� #�� ←� B�;-�

�2���

�;-��:����)��:��3*��>:���)�=�����$
������

�:����	�:�	������������
��
���������

C �	��� ←� �"� #"� ↔� ./7� /�����
�����7�

C+�$�)�	� ←� �,� #,� ↔� ./4� /�����
�����4�

C� !";�� →� �1� #1� ←� ./+� /�����
�����+�

B+�$�)�	� ←� �+� #+� ↔� ./1� /�����
�����1�

C/ !"� →� �4� #4� ←� ./,� /�����
�����,�

B�"�$�)�	� ←� �7� #7� ↔� ./"� /�����
�����"�

B->.� ↔� ��� #�� ←� ./�� J�K�F����=�
��	����*��6�	����	����������$
��	�


�))��:
	�)
���)�=����
��$�����:����8������


�	���
�9��A����=�
�����)�	�F���������4��
��

��$
��	������=���������
����$
��	*�



���������	�
��	��
����������������������,1+�

C�"�$�)�	� ←� ��� #�� ↔� /�� /�����
�������

D������ ←� ���� #��� ←� �;-�

�2 /L�

�;-��:����)������*���))���)�=��������$
������

�:����	��:�������	�������
��*���$���:�)��

)�=�����������:�������)��3����)�	*����)�	�����

�A�������
��
���9��)���)�

)�	�����0�����)�	*�

B.M5M>� ←� ���� #��� ↔� #5�� ������		�����)�*��>:���:
9:(��:��/�#�

������))���:�	�������)�����:�������		�)
��	(�

�����)
��	(����� ;>������;-� ;>*�

B.�5� � ←� ��"� #�"� ↔� .#��� ��������=�
��*��:
	���������
�	�����	�

���������$
��	�����:����	����	������:�������


��	��������:���������	*�#��
$��)�=*�

B�->� ↔� ��,� #�,� ↔� .#����� ��;-�=�
����������*��:
	�)
���
�	�����	����

�;-���$
�������:����	����	������:�������


��	��������:�������)
��	*�

B�- � ↔� ��1� #�1� ↔� .#�7�-� ��;-�������������*��:
	�)
�����))	�����;-�

��$
�������:����	������
$��
�	������������:��

������	*�#��
$��)�=*�

B/#��,� ↔� ��+� #�+� ↔� .#�4��� �

.C/ !,� ↔� ��4� #�4� ↔� .#�+��� �

�B/#���� ↔� ��7� #�7� ↔� .#�1�-� �

0C/ !�� ↔� ���� #��� ↔� .#�,��� �

/B/#���� ↔� ���� #��� ↔� .#�"�5� �

5�0�� ↔� �"�� #"�� ↔� .#����� �	�	���	��)��3*��:
	�
	��
�:�����+�N������

���)��	
9��)����4��2F�%#�'����,,N���������)��

���1*77��2F�%&�'*�

 C� �7� ↔� �"�� #"�� ↔� .#����� �

C� !4� ↔� �""� #""� ↔� .#�� �

.C� !+� ↔� �",� #",� ↔� .#��.� �

�C� !1� ↔� �"1� #"1� ↔� .#7��� �

/C� !,� ↔� �"+� #"+� � .#4�/� �

5B/#��"� ↔� �"4� #"4� ↔� .#+�5� �

C�;�� ←� �"7� #"7� ↔� .#1� �����
��)������*��:
	�	
9��)�9��	�:
9:�=:���

�:������
��)�������������/�#����)��
	�

����:��*�

C�#05� ←� �"�� #"�� ↔� .#,� ������		�)���:�����)�*��:
	�)
���
��
����	�

=:����:����8�:�	���$�)
�������		�����:��

��	(�=:����	���=
�:�#5�*�#��
$��:
9:*�

C+�$�)�	� ←� �"�� #"�� ↔� .#"� �

-.�� ←� �,�� #,�� ↔� .#�� ��	�
))����*��#�+�N���������)���)��3�	
9��)�

=
�:������?����������1*,������2F*�

D������ ←� �,�� #,�� ↔� .#�� �

#���312�����&7,���
����8�9��#���31�����&7:���
������;����������
���
����������&7,9�

Table B.19 
Pin assignments PC 62-pin connector 



,14��
������������������������������������������������������������������

 
B����	�4� →� /�� ��� →� .�25� ���������4��
���:

�	�)����	
9��)	����4��
�(�

����=�
��	���������������)�*�

B�;-�.�4� →� /"� �"� ↔� 0#",� ��;-��4��
���:

�	�)����	
9��)	����4��
������

=�
��	������;-����)�*�

C� !��� →� /,� �,� ↔� 0#""��� �

C� !��� →� /1� �1� ↔� 0#"��-� �

.C� !�"� →� /+� �+� ↔� 0#"���� �

-C� !�+� →� /4� �4� ↔� 0#����� �

0C� !�1� ←� /7� �7� ↔� 0#���-� �
/B/#���� ←� /�� ��� ↔� #�7��� �

5C/ !�� →� /�� ��� →� �5� 5� �

 B/#��+� ←� /��� ���� →� �5�>�� �

C/ -+� →� /��� ���� ↔� ./����� �

.B/#��4� ←� /�"� ��"� ↔� ./��� �

�C/ !4� →� /�,� ��,� ↔� ./���.� �

/B/#��7� ←� /�1� ��1� ↔� ./����� -/�#���3��=)��9��)
��	��	������

��3��=)��9��/�#���?��	�	�%/ !'*��

/#����
	����
����������:��/ #�� 56 .2�

�����
��*��#��
$��)�=*�

5C/ -7� →� /�+� ��+� ↔� ./�"�/� �

C+�O�)�	� � /�4� ��4� ↔� ./�,�5� �
B�#.�5 � →� /�7� ��7� ↔� ./�1� #�
����		�������:���;-��:����)������	���:
	�

	
9��)�=
�:�/ !����9�
��������)�����:��

�����		(����������������)�)
��	�����:����	*��

������)�)
��	�
����		���������������

�		������	
��	
�
)
�����������	:�	�	����

��������$�����+��	��*�

D������ � /��� ���� ↔� ./�+� �

-�����������������������������������
��������������������	�����������������
��

'�
����� ����������������;����� ���� �
��9�↔�������������<��
����������������9�

$%&'P��������#!�����#!$8�;������������������������������/,<������
����9��-�������

������������������
�������
���;�����������������������
���������������9�

Table B.20 
Pin assignments PC 36-pin connector 

B.7 Card dimensions 

The physical card dimensions for both the PC/XT and PC/AT standards are given below. 



���������	�
��	��
����������������������,17�

 

Figure B.1 
Card dimensions for PC/XT and PC/AT 

 
 

 

Figure B.2 
Card bracket position 

B.8 Centronics interface standard 

The parallel printer or Centronics interface standard, which includes a 36-pin connector, 
does not normally present too many difficulties. The full signal definitions are given in 
Table B.23. This interface is used primarily to interface printers to computers or other in-
telligent devices.  The interface has a limited distance because of its low-level +5 volt sig-
nals. 

 
 



,1���
������������������������������������������������������������������

-����������� -������

����

&���
��

����

-�����������������

�/.��� �� ��� 0�=�)�$�)�
�)	������*+��
���	�����	����������	���

���	�������:��/#�#�	
9��)	�
�����:��
�
����*��:��


�
���������	��:�����������:��)�=�)�$�)�����:
	�	
9��)*�

5�	�������B��3��=)��9��:�	����������������������


		�
�9��:����A��B�����	�����*�B�����	������
	�


9������
���:���8.L�
	�:
9:*�

��/#�#��B�� "B�� "�B"7� �������)
��	�������:��:�	�*�2
9:�)�$�)���
��	���	�

�
������(�)�=�)�$�)���
��	���	��
������*��/#�#���
	�

�:����	��	
9�
�
������
�*�.
9��)���	�����:
9:����)��	��

�*+��
���	�����	���������:����))
�9���9������:��B

�����	������	
9��)�����:�)�����)��	���*+�

�
���	�����	��������:���
	
�9���9�*�

#�3��=)��9�� ��� "�� 0�=�)�$�)�
�)	�����"����4��
���	�����	�
��
����	�


�
���������:��������
�����:��
�
�������������������:��

�����������
����
��*�

�8.L� ��� "�� 2
9:�)�$�)�
��
����	��:��
�
����������������
$������*��

��

��)�����
�
��	��:������	����:
9:��8.L�)�$�)�

�������������))����5  - �����
�
��*�

�5�%��
���5�
��'� �"� � 2
9:�)�$�)�
��
����	��:����:��
�
�����
	��������
�
��*�

.0���%.�)���'� �,� � 2
9:�)�$�)�
��
����	��:����:��
�
�����
	�-��0��5*�
��#8�-�655/�&�� �1� � 0�=�)�$�)�
��
����	�06�%)
�������'������	����������:�

� �%����
�9��������'�����*�

����������
��� �+� �  �	��$���	
9��)�)
��*�

.
9��)�9������ � �4� 0�9
�;	
9��)�9������)�$�)�%��$�)�	'*�

6�����9������ � �7� ��
��������
���;������9������)
��*�

����������
��� � �  �	��$���	
9��)�)
��*�

.
9��)�9������ � �����,�� �=
	����
�
�����)���������)
��	*�

�������
�
�
�)
F�� ,�� � 0�=�)�$�)�
�)	�����+���
���	�����	�����������	��	�

�:�������������
�
�
�)
F�	��:��
�
����*�

5  - � ,"� � 0�=�)�$�)�
��
����	��:��
�
�����
	�-66�0��5(�:�	���

�#�5 �-8�����:�	�	��	������5  - �����
�
��*�

.
9��)�9������ ,,� � 0�9
�;	
9��)�9������)�$�)�%��$�)�	'*�

����������
���� ,1� � �����	��*�

C+�$�)�	���9�)���� ,+� � ��������������:��C+�$�)�	�	�������:���9:�����������

,*,�3-:����	
	���*�

�.0�������

%B	�)����
�'�

,4� � 0�=�)�$�)�
��
����	��:��
�
�����
	�
)�����-��0��5�

%	�)�����'�=:����:��
�=���
	��������-�*�

��������������������������
������������������������'�9�9�����#!��

Table B.23 
Centronics pin assignments 



 Appendix C  

�����������	
����	�
�����������
���

This section contains brief qualitative information on the Intel 8255 programmable 
peripheral interface (PPI). Because of the chip’s immense popularity in data acquisition 
boards, an entire appendix is devoted to it. For more detailed information on the 8255’s 
operation, and the associated 8254 timer/counter (detailed in the following appendix), 
contact Intel for a copy of their data sheets for these chips. 

The 8255 is used to interface real-world peripherals to the host computer bus. These 
may be switch sensors, relays, instruments with digital readouts and controls, industrial 
I/O mounting racks, other computer buses, and so on. 

The chip has 24 programmable digital I/O lines. The 24 lines are divided into three      
8-bit ports (named port A, port B and port C). The ports may be programmed either as 
two groups of 12 lines (group A and group B) or as 3 individual 8-bit ports. The 
ports/groups may be operated in three modes: simple I/O (mode 0), strobed I/O (mode 1) 
and bi-directional I/O (mode 2). The 8255 also allows single bits to be set or reset in   
port C. 

 
 



���������������	����
����
������������
���������������������������
���
 

 

Figure C.1 
8255 Block diagram 

An 8255 occupies four consecutive addresses in the host computer’s I/O address space. 
They are the data registers of ports A, B and C and the 8255 control register, as shown 
below 
 

������� ��	��� 
����

�� ���	���������� ���	����������

�� ��������� ���	����������

�� ���	���������� ���	����������

�� ���	��
����� 	��������!�"�� �

 

Table C.1 
8255 Registers 

Before any I/O can be performed, the mode and direction of the ports/groups of the 
8255 must be set. This is done simply by writing one byte of configuration information to 




��������������������������������� !!���������������

the control register of the 8255. The 8255 then operates in the specified mode until it is 
reset or new configuration information is written to the control register. The format of this 
register is shown below, followed by the format of the data registers and description on 
how to use the chip in the different modes. 

C.1 DIO0CTRL – control register of the 8255 
This register has two functions: to set the operating modes of the three ports in the chip, 
and to set and reset individual bits in port C. The function and bit names of the register 
therefore depend on the setting of bit 7. The layout of the register is shown below. 
 
 

 

Figure C.2 
DIO0CTRL 8255 control register layout 

Bit 7, function select:  If this bit is set when the register is written to, then the register is 
in configuration mode. If the bit is 0, then the register is in bit set/reset mode (see below). 
The functions of the remaining bits are described below; the functions depend on the 
setting of bit 7. 


���	�����	����������	��������

This allows the mode to be set for each of the two groups of the 8255 and the direction set 
for the individual ports. Note that the direction of port C is independently programmable 
in two 4-line nibbles. 
Bits 6–5, group A mode select:  These two bits set the mode of the group A ports.  These 
are port A and the upper four lines of port C.  The bit combinations are as follows: 
 
 
 



���������������	����
����
������������
���������������������������
���
 

����� ����� �����������������

�� �� #�$���%� �&�
���'��

�� �� #�$���%� 	��(�$��'��

�� )� #�$���%�(�$����	���*
�(+ �

Table C.2 
Group A model select 

Bit 4, port A I/O direction:  If this bit is set, then port A functions as an input. If it is 0, 
then port A is configured as an output. 
Bit 3, port C upper I/O direction:  If this bit is set, then the upper four lines of port C 
function as inputs. If the bit is 0, then the lines become outputs. 
Bit 2, group B mode select:  This bit sets the mode of the group B ports. These are port B 
and the lower four lines of port C. The bit combinations are as follows: 
 

����� �����������������

�� #�$���%� �&�
���'��

�� #�$���%� 	��(�$��'��

 �����!�����������"�����#$��������������	��#����������������%�
���	�����	���������

�	�������%�

Table C.3 
Group B model select 

Bit 1, port B I/O direction:  If this bit is set, then port B functions as an input. If it is 0, 
then port B is configured as an output. 
Bit 0, port C lower I/O direction: If this bit is set, then the lower four lines of port C 
function as inputs. If the bit is 0, then the lines become outputs. 

�	�������������������	����"#����

Bits 6–5:  These bits have no effect in this function. 
Bits 3–1, bit select:  These bits select the bit in port C that is to be modified.  A code of 
000 selects port C line 0 to set or reset, 001 selects line 1 and soon up to 111 which 
selects line 7. 
Bit 0, set/reset:  This bit specifics the state into which the selected port C line will be 
placed.  Writing a 1 will make the line go high and a 0 makes it go low.  This operation 
has no effect on the other lines of port C. 

C.2 DIOA – port A of the 8255 (offset 0, read/write) 
This register is the data register of port A of the 8255.  The port can be operated in simple 
I/O mode, strobed I/O mode or bi-directional bus mode, modes 0, 1 or 2. 
 

�,� �-� ��� �.� ��� ��� ��� ���

Figure C.3 
Port A of the 8255 




��������������������������������� !!���������������

The bits A7 (MSB) down to A0 (LSB) reflect the status of the port’s I/O lines. 
Depending on the programmed I/O mode of the port, the lines may be inputs, outputs or 
bi-directional. 

C.3 DIOB – port B of the 8255 (offset 1, read/write) 
This register is the data register of port B of the 8255.  The port can be operated in simple 
I/O mode or strobed I/O mode, modes 0, or 1. 
 

�,� �-� ��� �.� ��� ��� ��� ���

Figure C.4 
Port B of the 8255 

The bits B7 (MSB) down to B0 (LSB) reflect the status of the port’s I/O lines. 
Depending on the programmed I/O mode of the port, the lines may be inputs or outputs. 

C.4 DIOC – port C of the 8255 (offset 2, read/write) 
This register is port C of the 8255.  It may operate in simple I/O mode, or some or all of 
its lines may be used as handshaking control lines for ports A and B when these ports 
operate in mode 1 or 2 and are therefore not available as I/O lines.  It is more meaningful 
to refer to them by their functional names, summarized in the following table and 
described below that. 
 

�,� �-� ��� �.� ��� ��� ��� ���

Figure C.5 
Port C of the 8255 

The bits C7 (MSB) down to C0 (LSB) reflect the status of the port’s available I/O lines. 
Depending on the programmed 1/0 mode of the port, the lines may be inputs or outputs. 
The other lines may be handshakes or interrupt request lines. 
 
&����
�

#	���

�	��#�����'�

�������

��������

	����'��������

��������

������'��������

�	(�	��"�	���#�

���'������)�

����,� ��'�� �'�� '��/�� '��/��

����-� ��'�� �'�� '��0�� '��0��

������ ��'�� ��/�� �'�� ��/��

����.� ��'�� '1!��� �'�� '1!���

������ ��'�� �2!��� �2!��� �2!���

������ ��'�� '1!��� '��0�� �'��

������ ��'�� ��/�� ��/�� �'��

������ ��'�� �2!��� �2!��� �'��

*!���$���#�+�,����"��	������	���#�	��	"������!���	��	���"�	-��#�.%�

Table C.4 
Port C line usage 



��.������������	����
����
������������
���������������������������
���
 

When an 8255 is used in one of the handshaking modes, the /STB and IBF lines are used 
to synchronize input data transfers. The /OBF and /ACK lines are used to synchronize 
output transfers.  The signals in the table above have the following functions: 
 
 ���� *$��� /��"�	��	���

'1!�� 34	���*
����+	� 1	��(�5�	
���4	���*
�$�����%�$�������	
� �
����
���
�*$ �

$*	*����&�	
�������
��*
�(+ ���	��	
����������	 ����+	�


*	�
6�

��/� 34	���*
�

�+	�+	�

���+	�(+������+

5�	
������� �	 �	
� �
����
��
�	����$��*	��

	��	
���4	���*
�$������	
*	��	 �$*	*�
* �(����
�*$�$�

��	��	
����������	7 ����+	�
*	�
6�

'��0� 34	���*
����+	� ��8���
�$��5�	
���4	���*
�$������*  ��	 �	
� �
����
���

	����$��*	��	
*	�	
���+	�+	�$*	*����	
����������	�
* �

(������*$6�

'��/� 34	���*
�

�+	�+	�

�+	�+	�(+������+

5�	
�������*  ��	 �	
� �
����
���	��

��$��*	��	��	
���4	���*
�$������	
*	�	
����� �$*	*�	��(��

��*$����&�	
�����	6��!
� �
�����*��(��+ �$�	�� 	��(��

	
��$*	*���	��	
���4	���*
�$�����6�

�2!�� ��	���*
��+	�+	� ��	���+�	���9+� 	5�	
� � ���*
�(���&� �*�	�����
��
��

�
���	
�������� ���9+� 	���� ����������&�	
��
� 	�

��&�+	��6��/������+	�����*	��� %��	���$��*	� �	
*	�	
����

� �$*	*����	
������� ���$�������	�	��(����*$�(:�	
��


� 	6��/����+	�+	�����*	��� ��	���$��*	� �	
*	�	
��

�4	���*
�$������
* ���*$�	
��$*	*�*�$�	
+ �	
��
� 	�

&*:����	��*��	
���(:	��	��	
����������	6��!
��

*�������*	����	���+�	���*(
��(�	 �&+ 	�(�� �	����	
��

�����	��*

���	
� � ���*
�	����*�
�	
��
� 	���&�+	��6�

'��� ��	���*
����+	� ��*$� ���*
5�	
� � ���*
�� ������*	�$�(:�	
�����	��
�


��� ����	
��
� 	���&�+	��6���	� 
�+
$�(��*�	��*	�$�

�
���	
�������*&��4��+	� �*�����+	��� 	�+�	�������&�

*�:���������� 	��6�

';�� ��	���*
����+	� ;��	�� ���*
5�	
� � ���*
�� ������*	�$�(:�	
�����	��
�


��� ����	
��
� 	���&�+	��6���	�� �*�	��*	�$��
���	
��

�����*&��4��+	� �*���+	�+	��� 	�+�	����	��*�:������

���� 	��6�

Table C.5 
Port C line usage functions 

The term external is used to refer to the external peripheral and internal to refer to the 
host computer bus. Input is an input signal or data to the 8255 while an output is a signal 
or line driven by the 8255. 

The next section describes the three operating modes of the 8255 ports/groups and the 
bit set/reset operation from the software programmer's point of view. Reading from or 
writing to the ports typically takes the form of one of the following instructions: 
 
 




��������������������������������� !!���������������

 
0�������� &��������� &����.�	���

�� $*	*�<������*$$��� �+	���*$$�%�$*	*��

�* �*
� $*	*�5<����	=*$$�>� ���	�=*$$�>�5<�$*	*�

��1��� $*	*�<��2���*$$��� �?!�*$$�%�$*	*�

�  �&(
:�


*��+*���

&���*
%�$*	*�

&���$4%�*$$��

���*
%�$4�

&���*
%�$*	*�

&���$4%�*$$��

�+	�$4%�*
�

;
���5� *$$��	���!��������������!��1)22����	������	���!��!����"�������,������

�����������%��

$*	*�	���!��������$�����������.�	����%�

Table C.6 
Instructions for reading or writing to the ports 

C.5 Mode 0: simple I/O 
This mode is used for simple input and output operations for each of the ports.  No 
handshaking is required and no interrupts are generated.  Data is simply read from or 
written to a selected port. 
   The following characterize mode 0: 

• Two 8-bit ports (ports A and B) and two 4-bit ports (upper and lower nibble 
of port C) 

• Any port can be configured for input or output   
• Outputs are latched, inputs are not latched   
• Data transfer by polled I/O 

C.6 Mode 0 programming 
To use the 8255 in mode 0: 

• Write a single byte to the control register to set the 8255 into mode 0 with the 
three ports configured for the desired data direction 

• Then read to or write from the I/O port corresponding to an 8255 port (port A, 
B or C) as many times as necessary to obtain or transfer the required amount 
of data 

C.7 Mode 1: strobed I/O 
In this mode data transfers are controlled by handshaking signals and hardware interrupts.  
Some of the port C lines are used for these control signals.  Hence they take on different 
functions and names.  The following characterize Mode 1: 

• Two groups, group A and B.  Each group consists of an 8-bit data port and 
three control lines 

• Certain port C lines take on special functions 
• The data ports can be either input or output ports 



��-������������	����
����
������������
���������������������������
���
 

• Both inputs and outputs are latched 
• One 2-bit simple I/O port 
• Data transfer by interrupts or polled I/O 

 
With both groups configured in mode 1, a single 8255 can read or write data 16-bits wide. 

C.8 Mode 1 programming 
To use the 8255 in mode 1 input with interrupts: 

• Write a byte to the control register to configure the 8255 for mode 1 and the 
appropriate group for data input 

• With the bit set/reset operation (see below), write a 1 to the interrupt enable 
flip-flop (INTE) of the desired port in the 8255 

• The external device pulses the strobe (/STB) input line low. The trailing edge 
of this loads data into the input port 

• The input buffer full (IBF) output line goes high to indicate that the data has 
been loaded into the input latch 

• When the external device pulls the /STB line high, the interrupt request line 
(INTR) goes high. This indicates to the host system that there is data to be 
read from the 8255 

• The computer reads the data using an interrupt service routine (ISR) and by 
doing so, automatically resets the INTR and the IBF signals 

• The external device can now pulse the /STB low again to load another byte of 
data into the 8255 

Whenever a group of the 8255 is in mode 1 input, the status of the handshaking lines and 
interrupt signals can be obtained by reading port C.  The byte read contains the following 
information: 
 

�,� �-� ��/�� �2!3�� �2!��� �2!3�� ��/�� �2!���

Figure C.6 
Port C mode 1 input status information 

The 8255 may alternatively be used in mode 1 and the data read by polled (program) 
transfer. This is done as follows: 

• Write a byte to the control register to configure the 8255 for mode 1 and the 
appropriate group for data input 

• The program continually monitors the appropriate IBF line by reading port C 
• The external device pulls the /STB input line on the digital I/O connector low 

and this loads data into the input port 
• The IBF output line goes high on the digital I/O connector to indicate that the 

data has been loaded into the input latch 
• This also causes the corresponding IBF bit in port C to be set and this tells the 

program that it can now read the data 
• Reading the data causes IBF to go low, thus the external device can now pull 

the /STB low again to load another byte of data into the 8255 
 




��������������������������������� !!�������������,�

The program could also enable the INTR line with the INTE flip-flop and then monitor 
INTR instead of the IBF line. In this case, the interrupts from the 8255 are not enabled in 
the host computer. 
 

 

Figure C.7 
8255 Group A and B as mode 1 inputs 

To use the 8255 in mode 1 output with interrupts: 
• Write a byte to the control register to configure the 8255 for mode 1 and the 

appropriate group for data output 
• With the bit set/reset operation, write a 1 to the interrupt enable flip-flop 

(INTE) of the desired port of the appropriate 8255 
• The 8255 interrupt request output (INTR) then goes high 
• The host computer detects the INTR line is active.  From an interrupt service 

routine (ISR) it writes a byte to the output port.  This automatically resets the 
INTR line 

• The output buffer full (/OBF) line goes low to indicate that there is data to be 
read by the external device from the 8255 

• The external device pulses the acknowledge (/ACK) input low and then high 
again to indicate that it has read the data 

• This makes INTR and /OBF go high again and the cycle may be repeated until 
all the required data has been written 

 
Whenever a group of the 8255 is in mode 1 output, the status of the handshaking lines 

and interrupt signals can be obtained by reading port C. The byte read contains the 
following information: 



���������������	����
����
������������
���������������������������
���
 

'��/�� �2!3�� ��� �.� �2!��� �2!3�� '��/�� �2!���

Figure C.8 
Port C mode 1 output status information 

The 8255 may alternatively be used in mode 1 and the data written by polled (program) 
transfer. This is done as follows: 

• Write a byte to the control register to configure the 8255 for mode 1 and the 
appropriate group for data output 

• The program continually monitors the /OBF line by reading port C, waiting 
for it to go high.  A high indicates that the last data written to the port has 
been read by the external device 

• Then the program can write new data to the port 
• The /OBF line goes low to indicate that there is data to be read by the external 

device from the 8255 
• The external device pulses the /ACK input low and high to read the data. 
• This makes the /OBF line go high again and the cycle may be repeated until 

all the required data has been written 
 

The program could also enable the INTR line with the INTE flip-flop and then monitor 
INTR instead of the /OBF line. In this case, interrupts to the host computer are not 
enabled. 

C.9 Mode 2: strobed bi-directional bus I/O 
This mode provides a means for communicating with an external device using an 8-bit 
bus for both transmitting and receiving data.  Both input and output handshaking signals 
similar to mode 1 are provided to maintain proper bus flow discipline. Hardware 
interrupts signal the host computer that the port needs attention. 
   The following characterizes mode 2: 

• Only group A operates in mode 2 
• One 8-bit bi-directional port, functions as both input and output 
• Five of the port C lines take on special functions 
• Both inputs and outputs are latched 
• One 3-bit simple I/O port 
• Data transfer by interrupts or polled I/O 
 
 
 




��������������������������������� !!�������������@�

Configuration Information
to PIACTRL Register

Configuration Information
to PIACTRL Register

1

1 1 0

0 1

PC5.4
I=Input
0=Output
X=Not Applicable

INTE A controlled by bit
set/reset of PC6

INTE B controlled by bit
set/reset of PC2

1

INTE
A

INTE
B

&

&

PA7

PB7

8

8

PA0

PB0

PC6

PC2

ACK

ACK

OBF

OBF

INTR

INTR

Simple I/O

A

B

A

B

A

B

PC7

PC1

PC3

PC0

PC5
PC4

1/0

Group A

Group B

Mode 1 (Port A)

Mode 1 (Port B)

 

Figure C.9 
8235 Group A and B as mode 1 outputs 

C.10 Mode 2 programming 
To use the 8255 in mode 2 with hardware interrupt transfer: 

• Write a byte to the control register to configure the 8255 for mode 2 operation 
• With the bit set/reset operation, write a 1 to the interrupt enable number 1 flip-

flop (INTE1) to enable output transfer interrupts.  Write a 1 to the interrupt 
enable number 2 flip-flop (INTE2) to enable input transfer interrupts.  Both 
input and output interrupts may be enabled at the same time 

• With both interrupt flip-flops enabled, the interrupt request line to the host 
computer is activated if the external device has strobed data into the 8255 
input latch or if the external device has read the output data from the output 
latch 

• The host computer detects the INTR line is active. The interrupt service 
routine (ISR) that services this interrupt determines whether it was an input or 
output interrupt by checking bit 5 (IBFA) of the mode 2 status information 
from port C.  (See below.)  If the IBF line is high (bit 5 is set), then it is an 
input interrupt; otherwise it is an output interrupt 

• The ISR simply reads the data from or writes data to the 8255 



�-�������������	����
����
������������
���������������������������
���
 

• This generates the appropriate handshake signals from the 8255 
• The cycle continues when the next interrupt is generated 
 

Whenever the 8255 is in mode 2, the status of the handshaking lines and interrupt 
signals can be obtained by reading port C. The byte read contains the following 
information: 
 

'��/�� �2!3�� ��/�� �2!3�� �2!��� ��� ��� ���

Figure C.10 
Port C mode 2 status information 

The 8255 may alternatively be used in mode 2 with the data read and written by polled 
(program) transfer. This is done as follows: 

• Write a byte to the control register to configure the 8255 for mode 2 
• The program continually monitors both the IBFA and /OBFA lines by reading 

port C 
• If the port C bit corresponding to IBFA is set, this indicates that the external 

device has written data into the input latch.  The program must therefore read 
the data from the port A 

• If the port C bit corresponding to /OBFA is set, this indicates that the external 
device has read the data written by the program to port A.  It must therefore 
write more data to port A 

• This process can be repeated until the required amount of data has been read 
and written 

 
Interrupts to the host computer must not be enabled when data is transferred by polled 

I/O. 

 

Figure C.11 
8255 Group A in mode 2 




��������������������������������� !!������������-��

C.11 Single-bit set/reset 
Any of the eight bits of port C can be set or reset using a single output instruction to the 
DIOCTRL register.  When port C is being used as status/control for port A or B any of 
these bits can be set or reset just as if they were data output ports.  The format of the byte 
to write to the DIOCTRL register to set or reset a port C bit is shown below. 
 

 

 

Figure C.12 
DIOCTRL register – bit set/reset mode 

C.12 Mixed mode programming 
An 8255 is not constrained to operate in one mode only.  For example, port A may 
operate in mode 2 and port B may then operate in either mode 1 or mode 0.  For any 
combination, some or all of the port C lines are used for control or status.  The remaining 
port C lines may be used in mode 0 either as inputs or outputs. 

A read operation of port C returns all the port C lines except the /ACK and /STB lines.  
In their place will appear the status of the interrupt enable flip-flops (INTEX). This is 
illustrated in Figures C.10 and C.11 above, and in the status information bytes that follow 
the figures. 

A write operation to port C will only affect lines programmed as mode 0 outputs. To 
write to any port C output programmed as a mode 1 output or to change an interrupt 
enable flip-flop, the bit set/reset operation must be used. 

Using the bit set/reset command, any port C line programmed as an output (including 
INTR, IBF and /OBF) can be written or an interrupt enable flag set or reset. Lines 
programmed as inputs (including /ACK and /STB) are not affected by this command. 

Writing to these lines will affect the interrupt enable flags. 



�-�������������	����
����
������������
���������������������������
���
 

C.13 8255-2 mode 1 and 2 timing diagrams 
 

 

Figure C.13 
Strobed input (mode 1) 

 

 

Figure C.14 
Strobed output (mode 1) 




��������������������������������� !!������������-��

 

Figure C.15 
Bi-directional bus (mode 2) 

 



Appendix D   

����������	
����	�
������	�����

����	����
���

 
This section contains brief qualitative information on the Intel 8254 programmable timer-
counter. Because of the chip’s immense popularity in data acquisition boards, an entire 
appendix is devoted to it. For more detailed information on the operation on the 8254 and 
the associated 8255 PPI (detailed in the preceding appendix), contact Intel for a copy of 
their data sheets for these chips. 

This appendix describes the architecture of the 8254, and then details the 8254 registers 
as seen from the host computer. Next, it describes programming the chip and lastly, it 
explains how the six different counting modes operate. 

D.1 8254 architecture 
The 8254 are a general-purpose 3-channel timer/counter device. Each timer counter is 
totally independent, and each may be programmed in different modes and data formats.  
Since all three timers are identical, the information provided here applies equally to each.  
The operation of a timer-counter (hereafter referred to simply as a timer) is as follows: 
The host computer writes a 16-bit word, called the initial count, to the timer.  Every time 
the timer receives a clock pulse it decrements the count value. 
   Now, to the external system, a timer has three connections. They are: 

• A clock pulse input 
• A gate input 
• A timer output 

 
The behavior of the timer output depends on the timer’s counting mode. 
 



���������	�
������
�������������������������������������������

 

Figure D.1 
8254 Block diagram 

 

Figure D.2 
Block diagram of a timer/counter 



��������������	��������� ������������ �����������������!�������"# ���  

 

The timer/counter chip itself consists of a control word register, some logic circuitry, and 
the three counters. 

Each counter consists of a 2-byte wide count register, a 16-bit counting element and a 
2-byte wide output latch. 

��������	
�������
��

The count register stores the initial 16-bit count written to a counter. It consists of 2-byte 
wide registers, which are written to separately. When a counter is programmed with a 
control word, the count register is cleared. Both count register bytes are transferred 
(loaded) to the counting element simultaneously. 

�����
�	��������������

The counting element is simply a 16-bit pre-settable synchronous down counter. It cannot 
be read from or written to directly. It is automatically loaded on specified conditions from 
data in the count register. The count value is always read from the output latch. 

������������������

The output latch normally follows the counting element. It consists of 2-byte wide 
registers, which are read from, separately.  If a suitable counter latch command (see 
below) is sent to the counter, the current count value is latched in the output latch until it 
is read from the counter's data register (TC2, TCI or TC0). Thereafter, the output latch 
continues to follow the counting element. 

D.2 8254 Registers 
An 8254 occupies four consecutive addresses in the host computer's I/O address space.  
They are the data registers of timers 0, 1 and 2 and the 8254 control register, shown 
below. 
 

������� ��
��� 
����

�� ����������	����������� ����������	�����������

 � ����������	����������� ����������	�����������

�� ����������	����������� ����������	�����������

�� ���	��
���!�"	���������#�� ��

Table D.1 
8254 Registers 

����
���
����������������������	
������������������
������ ��

The timer/counter control register is used to program, for each counter, the counting 
mode, the number of bytes to read/write and whether the counter counts in BCD or binary 
format. In addition, this register can be used to perform read-back commands and counter 
latch commands. Note that the function and bit names of this register differ according to 
whether configuration mode, counter latch command, or read-back command is selected 
with bits 7–6 (SC1 and SC0) and bits 5–4 (RW1 and RW0). 

Read-back and counter latch commands, as well as the functions of the different 
counter modes are described below. 



���������	�
������
�����������������������������������������$�

 

 

Figure D.3 
TCCTRL register 

The functions of the remaining bits are described below, depending on the setting of bits 
7 and 6 and bits 5 and 4. 

����
	����
��������

Bits 7–6, select counter (SC): These two bits select the timer/counter to which the rest of 
the TCCTRL register bits will apply. The SC bits are defined as follows: 
 

!�"� !�#� ������
�������������

�� �� %�
��	�����	�����

��  � %�
��	�����	��� �

 � �� %�
��	�����	�����

 �  � ��&'�(&�)�����&�'�

Table D.2 
Select counter 

Bits 5–4, read/write mode (RW): These two bits select the read/write mode of the 
selected timer/counter. The RW bits are defined as follows: 
 


�"� 
�$� ������
�������������

�� �� ����	���
&	�
�����&�'�

��  � ��&'*���	��
�&"	�"�!�����&�	�(+	��

��
+�

 � �� ��&'*���	��
�&"	�"�!�����&�	�(+	��

���"	�

 �  � ��&'*���	��
�&"	�"�!�����&�	�(+	��

���"	,�	
�����"	�"�!�����&�	�(+	��

Table D.3 
Read/write mode 



��������������	��������� ������������ �����������������!�������"# ���  

 

Bits 3–1, counter mode select (M): These three bits select the operating mode of the 
timer/counter selected with bits 7-6. The Mode bits are defined as follows: 
 

%$� %"� %#� ������
�	������

�� �� �� -�'����

�� ��  � -�'�� �

��  � �� -�'����

��  �  � -�'����

 � �� �� -�'����

 � ��  � -�'����

Table D.4 
Counter mode select 

Bit 0, counting mode select (BCD): This bit determines whether the selected counter is 
to count in BCD or binary format. A 0 specifies 16-bit binary counting and a 1 specifies 4 
decade binary coded decimal counting. 


���&'��(���������

When the read-back command is specified, the bit definitions of the TCCTRL register 
are: 

Bits 7-6 These bits must both be set to 1 to invoke the read-back 
command.  

Bit 5 Count (/CNT): Setting this bit to 0 causes the timer/counter chip 
to latch the count(s) of the counters selected with bits 3–1 of this 
register (see below). 

Bit 4 Status (/STS): Setting this bit to 0 causes the timer/counter chip to 
latch certain status information from the counters selected with 
bits 3–1 of this register (see below). The format of the status byte 
is shown in Figure D.10. 

Bits 3–1 Select counter (SCN): Setting one or more of these bits causes the 
corresponding counter to latch its count and/or status information, 
when the read-back command is issued.  Setting SCN2 latches 
counter 2 information, SCN1 counter 1 and SCN0 counter 0. 

Bit 0 This bit performs no function and should be set to 0. 

����������������������

The bit definitions of the TCCTRL register, when the counter latch command is specified, 
are as follows: 

Bits 7–6 Select counter (SC): These two bits select the timer/counter 
whose count is to be latched. 

Bits 5–4 These two bits must both be set to 0 to specify the counter latch 
command. 

Bits 3–0 These four bits perform no function and must all be set to 0. 

�



���������	�
������
�����������������������������������������.�

����)��
������������#���������#���������
����

This is the data register of the first timer/counter. 
Before reading or writing from this register, a control word for this counter must be 

written to the timer/counter control register. Then ‘reads’ and ‘writes’ to this register 
must follow the format specified in the control word. 
 
 
���$� ����� ����� ����� ����� ����� ��� � �����

Figure D.4 
TC0 register 

The bits TC07 (MSB) down to TC00 (LSB) reflect the high byte or the low byte of the data 
‘read from’ or ‘written to’ this counter. 

��"�)��
������������"���������"���������
����

This register is the data register of the second timer/counter. 
Before reading or writing from this register, a control word for this counter must be 
written to the timer/counter control register. Then ‘reads from’ and ‘writes to’ this 
register must follow the format specified in the control word. 
 
�� $� �� �� �� �� �� �� �� �� �� �� ��  � �� ��

Figure D.5 
TCI register 

The bits TC17(MSB) down to TC10 (LSB) reflect the high byte or the low byte of the data 
read or written to this counter. 

��$�)��
������������$���������$���������
����

This register is the data register of the third timer/counter. 
Before reading or writing from this register, a control word for this counter must be 

‘written to’ the timer/counter control register. Then ‘reads from’ and ‘writes to’ this 
register must follow the format specified in the control word. 
 
���$� ����� ����� ����� ����� ����� ��� � �����

Figure D.6 
TC2 register 

 
The bits TC27 (MSB) down to TC20 (LSB) reflect the high byte or the low byte of the 
data read or written to this counter. 

D.3 Programming a counter 
On power-up or reset, the state of the 8254 is undefined. Before any timer/counter 
operations can be performed, each timer to be used must be programmed with a control 
word, which is written to the control register. This sets the individual counters: 

• Operating mode (Mode 0 to 5) 



�$������������	��������� ������������ �����������������!�������"# ���  

 

• Counting format (BCD or binary) 
• Read/write format (LSB only, MSB only or LSB then MSB) 

 
The programmed counter then operates in the specified format until it is reset or new 

configuration information is written to the control register. The format of this register 
when used for configuring a counter is repeated below for reference. 
 

 

Figure D.7 
TCCTRL register – configuration mode 

*��������������������

Using the control word, each counter may be programmed to transfer data from the host 
computer in one of three ways: 

• Read/write least significant byte only 
• Read/write most significant byte only or 
• Read/write least significant byte first, then most significant byte 

 
A new initial count may be written to a counter without affecting the counter’s 

programming in any way. Counting will be affected as described in the mode definitions 
below. 

Writing a 1-byte initial count simply consists of outputting the byte to the counter’s 
data register. Writing a 2-byte count consists of writing the first byte (the least significant 
byte) to the counter’s data register and then, at any time later, writing the second or most 
significant byte to the same data register. 

����(�������
�����

The clock pulse input is the physical connection, where clock pulses are applied to a 
counter. A clock pulse is defined as a rising edge, then a falling edge, in that order, at a 
counter’s clock input. New counts are loaded, and the counting element is decremented, 
on the falling edge of a clock pulse. 

+����
�����

Depending on the counter’s mode, the gate input provides for enable/disable counting, 
count initiating (trigger), or setting/resetting the timer output. 

D.4 Read operations 
It is often necessary to read the value or status of a counter without disturbing the count in 
progress.  There are three methods:  



���������	�
������
����������������������������������������$ �

• A simple read operation  
• A counter latch command or  
• A read-back command.  

 
The results of the read operation are read from the counter’s data register, in the 
programmed format (LSB, MSB or LSB then MSB) of that counter.  

This is called reading a counter, and may take ‘one physical CPU read’ instruction 
(LSB or MSB) or ‘two physical CPU read instructions’ (LSB then MSB). 

!
����������������
���

The simple read operation consists of reading the contents of the desired counter's data 
register. The clock input of the counter must be disabled for this to be successful, 
otherwise the count may be in the process of changing when it is read, returning a 
completely erroneous count value. The clock input may be disabled with the gate input or 
with external logic. 

����������������������

A counter latch command is invoked by writing a special type of control word to the 
timer/counter’s control register, TCCTRL. 

The format of the control word for a counter latch command is diagrammed below. 
 

 

Figure D.8 
TCCTRL register – counter latch command 

Bits SC1 and SC0 select the counter whose count is to be latched. 00 selects counter 0, 
01 selects counter 1 and 10 selects counter 2. 

The selected counter’s output latch, latches the count at the time the counter latch 
command is received. The count is held in the latch until it is read (or the counter 
reprogrammed). The count is then automatically unlatched and the output latch returns to 
following the counting element. Multiple counter latch commands may be used to latch 
more than one counter. Each latched counter holds its count until read. Counter latch 
commands do not affect the programming of the counter in any way. 

If a counter is latched, any subsequent counter latch commands to the same counter, 
before the count has been read, will be ignored. When read, the count value returned will 
be the count at the time the first counter latch command was issued. 


���&'��(���������

A read-back command is issued by writing a special type of control word to the 
timer/counter’s control register, TCCTRL. Read-back commands may be used to latch 
one or more counter’s current count value and/or status information. 



�$������������	��������� ������������ �����������������!�������"# ���  

 

The format of the control word for a read-back command is diagrammed below. 
 

 

Figure D.9 
TCCTRL register – read-back command 

Setting any or all of bits 3 to 1 (SCN2 to SCN0) selects the counter(s) to which this 
command will apply. Setting the count (/CNT) bit to 0 causes the current count of the 
selected counter(s) to be latched, setting the status (/STS) bit to 0 causes the status byte of 
the selected counter(s) to be latched and setting both bits to 0 causes both the status and 
current count to be latched (see below). 

%���
������������������

The read-back command is used to latch the current count of multiple counters in their 
respective output latches. This is done by setting the count bit to 0 in the control word for 
this command.  This single command is functionally equivalent to multiple counter latch 
commands. Each counter’s latched count is held until read (or the counter 
reprogrammed). That counter is automatically unlatched when read, but the other 
counters remain latched until they are read. If multiple read-back commands are issued to 
the same counter without reading the count, all but the first are ignored. The count 
returned is the current count at the time the first read-back command was issued. 

���������������
�������
���

The read-back command may also be used to latch certain status information of the 
selected counter(s), in their respective output latches. This is done by setting the status bit 
to 0 in the control word for this command. 

The counter's status byte, when read, provides the information shown in the diagram 
below. 

 

Figure D.10 
TCX register – status byte 

Bits M2 to M0 return a binary number corresponding to the counter’s programmed 
mode. 



���������	�
������
����������������������������������������$��

The null count bit indicates if the last count written to the count register has been loaded 
into the counting element. If the count has not yet been loaded, then it cannot be read and 
the null count bit will be set to 1. Reading the count when the null count bit is set, will 
return the current count from the previous initial count, written to the count register. The 
exact time that the new count is loaded depends on the mode of the counter (see below), 
but the ‘null count bit clear’ indicates that the new count has been loaded. 

Bit 7 (OUT) reflects the state of the counter’s output pin. This provides software with 
the power to monitor this pin. 

�����
�	�'�����������������������������

Setting both the status (/STS) bit and the count (/CNT) bit to 0 causes both the status byte 
and the current count of the selected counter(s) to be latched simultaneously. This is 
functionally the same as issuing two separate read-back commands at once. If both the 
status and current count are latched, the first read operation of the counter’s data register 
will return that counter's status byte, regardless of which was latched first. The next one 
or two reads, (depending on whether the counter has been programmed for one or 2-byte 
counts), return the latched count. Subsequent reads, return unlatched counts. 

D.5 Counter mode definitions 
The following six sections describe in detail the different counting modes of the 8254 
timer/counter. In the descriptions that follow, output refers to the state of the output pin of 
the device, and gate refers to the state of the counter’s gate input pin. Both signals from 
all three counters are available on the auxiliary connector. 

The word Trigger is used to mean a rising edge at a counter’s gate input, Counter 
Loading is the transfer of the initial count from the counter’s count register to its counting 
element and Clock Pulse is a rising edge and then a falling edge at a counter’s clock 
input. 

%����#,�
����������������
����������

After the mode byte is written to the control register, the output is low. Once an initial 
count has been written, the output remains low until the counter has counted down to 
zero. The output then goes high and remains high until a new count is written or the 
counter reprogrammed. The gate input inhibits counting when low, and enables counting 
when high. 

After the control word and initial count have been written, the counter is loaded on the 
next clock pulse. This clock pulse does not decrement the count, so for an initial count of 
N, the output goes high N+1 clock pulses after the initial count was written. 

If a new count is written to the counter, it will be loaded on the next clock pulse and 
counting will continue from the new count. If a two-byte count is written, the first byte 
disables counting and sets the output low. After the second byte is written, the full count 
is loaded on the next clock pulse. This allows the counting sequence to be synchronized 
by software. Again, the output goes high after N+1 clock pulses. 

If the initial count is written when the gate is low, it will still be loaded on the next 
clock pulse. When the gate goes high, the output will go high, N clock pulses later. 

Using the internal oscillator or bus clock, this mode can be used to generate a positive 
edge on the external output after a programmable time, or if the board is ‘jumpered’ for 
interrupts, to generate an interrupt after a programmable time. 

This mode can also be used to count events or frequency. 



�$������������	��������� ������������ �����������������!�������"# ���  

 

%����",������������&��
		���'������&�����

After the counter is programmed the output will be high. Writing an initial count arms the 
counter and a subsequent trigger loads the counter. The output goes low on the next clock 
pulse and remains low until the counter reaches zero. The output then goes high and 
remains high until the next clock pulse after the next trigger. 

An initial count of N results in a one-shot pulse N clock cycles long. The one-shot is re-
triggerable; hence the output will remain low for N clock pulses after any trigger. The 
one-shot pulse can be repeated without rewriting the initial count to the counter. The gate 
input has no effect on the output. 

If a new count is written to the counter during a one-shot pulse, the current one-shot 
pulse is not affected unless the counter is re-triggered. In that case, the counter is loaded 
with the new count and the current one-shot pulse continues until the new count expires. 

%����$,������	���������

After the counter is programmed the output will be high. An initial count of N is loaded 
on the next clock pulse and when it has decremented down to 1, the output goes low for 
one clock pulse. The output then goes high, the counter automatically reloads the initial 
count and the process is repeated indefinitely. The sequence is repeated every N clock 
pulses. 

The gate input enables counting when high, and inhibits counting when low. If the gate 
goes low during an output pulse, the output is set high immediately. A trigger reloads the 
initial count on the next clock pulse and the output goes low for one clock pulse after N 
clock pulses. Thus, the gate input can be used to synchronize the counter. 

Writing a new count does not affect the current counting sequence. If a trigger is 
subsequently received before the end of the current period, the counter will be reloaded 
on the next clock pulse and counting will continue from the new count. Otherwise, the 
new count will be loaded at the end of the current cycle. In this mode, an initial count of 1 
is invalid. 

Mode 2 functions like a divide by N counter. It can also be used to generate an output 
frequency or a periodic interrupt. 

%�����,��-�������.��	���������

Mode 3 is similar to mode 2 except for the duty cycle of the output. After the counter is 
programmed, the output will be high. An initial count of N is loaded on the next clock 
pulse. When half of the initial count has expired, the output goes low for the remainder of 
the count. The output then goes high, the counter automatically reloads the initial count 
and the process is repeated indefinitely. This results in a square wave with a period of N 
clock cycles. 

The gate input enables counting when high, and inhibits counting when low.  If the gate 
goes low when the output is low, the output is set high immediately.  A trigger reloads the 
counter with the initial count on the next clock pulse. Thus, the gate input can be used to 
synchronize the counter. 

Writing a new count does not affect the current counting sequence. If a trigger is 
subsequently received before the end of the current half-cycle of the square wave, the 
counter will be reloaded on the next clock pulse and counting will continue from the new 
count. Otherwise, the new count will be loaded at the end of the current half-cycle. 

Mode 3 functions slightly differently for even and odd initial count values. 



���������	�
������
����������������������������������������$��

For even counts: the output is initially high. On the next clock pulse, the initial count is 
loaded. On subsequent clock pulses, it is decremented by two. When the count expires, 
the output toggles, and the counter is reloaded with the initial count. This process is 
repeated indefinitely. 

For odd counts: the output is initially high. On the next clock pulse, the initial count 
minus one (an even number) is loaded. On subsequent clock pulses, it is decremented by 
two. One clock pulse after the count expires, the output goes low, and the counter is 
reloaded with the initial count minus one. Subsequent clock pulses continue to decrement 
the count by two. When the count expires, the output goes high again and the counter is 
reloaded with the initial count minus one. This process is repeated indefinitely. So for odd 
counts, the output is high for (N+1)/2 counts and low for (N–1)/2 counts, or high for one 
count longer than it is low. 

Mode 3 is typically used to generate an output frequency. 

%����/,���������&��
		���������'��

After the mode byte is written to the control register, the output is high. Once an initial 
count has been written, the output remains high until the counter has counted down to 
zero. The output then goes low for one clock pulse and then goes high again. The 
counting sequence is triggered by writing an initial count. 

The gate input inhibits counting when low, and enables counting when high. It has no 
effect on the output. 

After the control word and initial count have been written, the counter is loaded on the 
next clock pulse. This clock pulse does not decrement the count, so for an initial count of 
N, the output strobes low N+1 clock pulses after the initial count was written. 

If a new count is written while counting, it will be loaded on the next clock pulse and 
counting will continue from the new count. If a two-byte count is written, the first byte 
written has no effect on counting. After the second byte is written, the full count is loaded 
on the next clock pulse. This allows the counting sequence to be re-triggered by software. 
Again the output strobes low after N+1 clock pulses. 

Using the internal oscillator or bus clock, this mode can be used to generate a negative 
pulse on the external output after a programmable time. With an external clock source, it 
generates a pulse after a programmable number of events. 

%����0,� ��������&��
		���������'��

This mode is similar to mode 4 except that the counting is triggered by a rising edge on 
the counter’s gate input. 

After the control word and initial count have been written, the output is high. The 
counter is loaded on the next clock pulse after a trigger is received. This clock pulse does 
not decrement the count. The output remains high until the counter has counted down to 
zero. The output goes low for one clock pulse and then goes high again. Therefore, for an 
initial count of N, the output strobes low N+1 clock pulses after the initial count was 
written. 

The counting sequence is re-triggerable: a trigger causes the counter to be loaded with 
the initial count on the next clock pulse. The output will not strobe low until N+1 clock 
pulses after any trigger. The gate input has no effect on the output. 

If a new count is written while counting, it will have no effect on the current count 
sequence. If a trigger is received after the new count is written but before the current 
count expires, the counter will be reloaded on the next clock pulse and counting will 
continue from there. 



�$������������	��������� ������������ �����������������!�������"# ���  

 

Using the internal oscillator or bus clock, this mode can be used to generate a negative 
pulse on the external output after a programmable time from an external trigger. 
 

������
�	�

�����

�������	�
�	����� 

�
�	� 1
	��

�� /�"&(
�"�����	��!� 0� 1�&(
�"�����	��!�

 � 0� ���	�&	�"�����	��!�

&�'���"�	"���	��	�

&�	�����2	��
��)�

0�

�� /�"&(
�"�����	��!�&�'�"�	"�

��	��	�����'�&	�
+�
�!
�

���	�&	�"�����	��!� 1�&(
�"�����	��!�

�� /�"&(
�"�����	��!�&�'�"�	"�

��	��	�����'�&	�
+�
�!
�

���	�&	�"�����	��!� 1�&(
�"�����	��!�

�� /�"&(
�"�����	��!� 0� 1�&(
�"�����	��!�

�� 0� ���	�&	�"�����	��!� 0�

Table D.5 
Summary of the functions of the gate inputs 

D.6 Interrupt handling 
Each timer/counter maybe configured to generate interrupt requests (IRQs) to the host 
computer.  It is the same, in principle, as using any other device to generate PC interrupts: 

• Program the counter and perform any other setup that has to be done 
• Save the state (enabled or disabled) of the selected interrupt level on the PC 

system board and then disable it 
• Save the old interrupt vector and install a new one that will point to the 

interrupt service routine that will service the timer interrupts 
• Enable the interrupt level in the PC’s interrupt controller 

 
Now the software can continue with other tasks. The interrupt service routine must: 

• Do whatever processing it needs to do 
• Either chain another interrupt-routine if the interrupt line is being shared, or 

write an end-of-interrupt command to the PC system board interrupt controller 
 
 
To clean up the interrupts after using them: 

• Disable the interrupt level 
• Restore the interrupt vector to what it was before 
• Restore the interrupt level to its previous state 

 
Note that some timer/counter modes are more suitable for generating interrupts (for 
example, mode 0) than others. 

 



 Appendix E 

���������	
���
�
����

The IPTS-68 standard defines thermocouple voltages as a function of temperature 
according to the following polynomial equation: 
 
V=C0+C1T+C2T2+C3T3+…… +CnTn 

�������

V = thermocouple voltage in units of µV (10-6 V, or microvolts) 
T = thermocouple temperature in °Celsius 
C1,C2,C3,……Cn = polynomial coefficients 

��	��
������
�
�	���

Number of ranges = 1 
Range #1 0 to 1820°C 
Order of polynomial = 8 
 

�
����
���� �
����������

�� �������������������������

�� �	�
���
�����	�����
������

	� �����	�����������
������

�� ���
�����	�
�������
������


� 	������
��������
������

�� �����������	�����
����	�

�� 	�
������
������
������

�� �����	��
��������
������

�� ���	������������
���		�

 



���������������	����
����
������������
���������������������������
���
�

��	��
�������
�
�	���

Number of ranges = 1 
Range #1 0 to 1820°C 
Order of polynomial = 8 
 

�
����
���� �
����������

�� �����������������
������

�� 
������	��
�����
������

	� �����		���������
����	�

�� �	�	��	
����	����
������


� ���	
�	���������
������

�� �	������		�

����
������

�� ����	
����������
����
�

�� �
�

��	����

����
������

�� ���	������������
���		�

�

�

��	��
�������
�
�	���

Number of ranges = 1 
Range #1 0 to 1820°C 
Order of polynomial = 8 
 

�
����
���� �
����������

�� �����������������������

�� ����������������
������

	� ����	�	
��������
������

�� �	���������������
������


� 	������
���	����
������

�� �	�
��
��	�������
������

�� �����������
�����
������

�� 
����������
����
���		�

�

�

�

�




������������������������������
������

��	���������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 13 
 

�
����
���� �
����������

�� �����������������
������

�� ����������������
������

	� ����������������
����	�

�� �
�
��	����
�����
����
�


� �����
�	���������
������

�� �
��������
	�����
������

�� ����������

�����
������

�� �����������������
������

�� ������
����������
������

�� ���	�������	�����
������

��� �	���������������
������

��� 
����	�����	����
���	��

�	� �����������������
���	��

��� �
��������
������
���	��

 
 
 
 
Range #2 0 to 1000°C 
Order of polynomial = 9 
 

�
����
���� �
����������

�� �����������������
������

�� ����������������
������

	� 
������
�
�	����
����	�

�� ���		����	�	����
������


� ���
�	�����������
������

�� ���
	��		�������
������

�� �	�
�������������
����	�

�� 	������	�
������
������

�� �����
�	���������
������

�� 	������	�
������
���		�

�



���������������	����
����
������������
���������������������������
���
�

��	���������
�
�	����

Number of ranges = 2 
Range #1 –210 to 760°C 
Order of polynomial = 7 
 

�
����
���� �
����������

�� �����������������������

�� �����	����	�����
������

	� ���
	�
��	�
����
����	�

�� ����������
�����
������


� ����
��	��������
������

�� �����		
���������
������

�� ���
������������
������

�� ��������

�������
������

 
 
Range #2 760 to 1200°C 
Order of polynomial = 5 
 

�
����
���� �
����������

�� 	���	�����������������

�� ���������	�������
������

	� ��	�����
	������
������

�� ���		����
	������
������


� ����
�����������
������

�� ����	�������	����
������

�

��	����������
�
�	����

Number of ranges = 1 
Range #1 –270 to 760°C 
Order of polynomial = 7 
 

�
����
���� �
����������

�� �����������������
������

�� �������	�	�
����
������

	� 
���
�����������
������

�� ������	
���������
������


� �����		��	������
������

�� �����
���	�������
������

�� ����������������
������

�� ���	���
�
�	����
������




������������������������������
������

��	����������
�
�	����

Number of ranges = 1 
Range #1 –210 to 760°C 
Order of polynomial = 7 
 

�
����
���� �
����������

�� �����������������
������

�� ��	
�	
�	�	�����
������

	� 	����������
����
����	�

�� ���

��	���������
������


� �	���������������
������

�� �������
�	�������
������

�� 
���������������
����
�

�� �	��������
	�����
������

�

�

��	���������
�
�	����

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 10 
 

�
����
���� �
����������

�� �����������������
������

�� ���
��
���������
������

	� 	��
��	���������
����	�

�� �������
���������
����
�


� ��������	��	����
������

�� �	�
�������	
����
������

�� �	�
�������������
������

�� �������	���������
����	�

�� �����	��	�	������
������

�� ���	�������	������
������

��� ������	�����
����
���	��

 
 
 
 
 
 
 
 
 



���������������	����
����
������������
���������������������������
���
�

Range #2 0 to 1372°C 
Order of polynomial = 8 
 
 

�
����
���� �
����������

�� ����������	������
������

�� �������

��	����
������

	� ����
���
�������
����	�

�� ������	��


�����
������


� 	�	�������������
������

�� �������	��	������
������

�� 	����	����������
������

�� ���	�
��
��������
������

�� 	�		����
�������
���	��

�

��	����������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 12 
 

�
����
���� �
����������

�� �����������������
������

�� 	���������������
������

	� 	��	�	�
�
������
����	�

�� �����
�����

����
����
�


� �����
������	����
������

�� �
�
��
��
�������
������

�� �������
�
�������
������

�� ������
����������
�����

�� �
�����	�	�������
������

�� �����������������
������

��� �����
������	����
������

��� ����	������������
���	��

�	� ����	������������
���	
�

 
 
 
 
 
 
 
 
 




������������������������������
������

Range #2 0 to 1372°C 
Order of polynomial = 6 
 

�
����
���� �
����������

�� �����������������
������

�� 	���������������
������

	� 	���		��		������
����	�

�� ��������	��������
������


� ������
���������
������

�� ������
����������
������

�� ���	�������������
������

�

�

��	����������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 12 
 

�
����
���� �
����������

�� �����������������������

�� �������	��������
������

	� 	�����
�	�������
����
�

�� 	�����	���	�����
����
�


� ����	���
�������
������

�� 
�	������
	�����
������

�� ��������			�����
������

�� �������
��������
������

�� 
�������	�������
������

�� ���	
����
������
������

��� ���	�
	���������
������

��� ���	������������
���	��

�	� ���	������������
���	
�

�

�

�

�



���������������	����
����
������������
���������������������������
���
�

��	���������
�
�	���

Number of ranges = 4 
Range #1 –50 to 630.74°C 
Order of polynomial = 7 
 

�
����
���� �
����������

�� �����������������������

�� ��	�������������
������

	� ���������
�����
����	�

�� �	�
���	��
������
������


� ���	��
���������
������

�� �
�
�
�����������
������

�� ���
������������
����
�

�� ������	�
��������
������

 
 
Range #2 630.74 to 1064.43°C 
Order of polynomial = 3 
 

�
����
���� �
����������

�� �	��
������	�����
����	�

�� ���
������
�����
������

	� 	����		���	�����
������

�� �	���������������
������

 
 
Range #3 1064.43 to 1665°C 
Order of polynomial = 3 
 

�
����
���� �
����������

�� ��
�����	��	����
�������

�� 	����������	����
������

	� ����	�����������
������

�� �������
���������
������

 
 
Range #4 1665 to 1767.6°C 
Order of polynomial = 3 
 

�
����
���� �
����������

�� ���

�����������
����
�

�� �����
	����������
����	�

	� �������
�	������
������

�� �	�		��	���������
������




������������������������������
������

��	���������
�
�	���

Number of Ranges = 4 
Range #1 –50 to 630.74°C 
Order of polynomial = 6 
 

�
����
���� �
����������

�� �����������������������

�� ��������	�
�����
����	�

	� ��	�������������
����	�

�� �	�	�

�	�������
������


� 	��
�	��
�
�����
������

�� �	�	

���
�

����
������

�� �����
����������
������

 
 
Range #2 –630.74 to 1064.43°C 
Order of polynomial = 2 
 

�
����
���� �
����������

�� �	���	

���������
����	�

�� ��	����	�		�����
������

	� ���
������
	����
������

 
 
Range #3 1064.43 to 1665°C 
Order of polynomial = 3 
 

�
����
���� �
����������

�� ��	���	�	�������
������

�� ��
�������
�����
������

	� ����	
�
��������������

�� �����		
	
�������
������

 
 
Range #4 1665 to 1767.6°C 
Order of polynomial = 3 
 

�
����
���� �
����������

�� ����
�����������
����
�

�� �������	����	����
����	�

	� ����������������
������

�� �	�	
�
����
�����
������

�



���������������	����
����
������������
���������������������������
���
�

��	���������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 14 
 
 

�
����
���� �
����������

�� ����������������
������

�� ����
�����
�����
������

	� 
�
�	���	
�	����
����	�

�� ���
��	��
������
����
�


� �����

���������
������

�� ���

�
���������
������

�� 	�	��������
����
������

�� ���	
�
���������
������

�� ����
��	
	������
����	�

�� 	��	������������
����
�

��� ��
	������
�����
������

��� 
�����	�
��
����
������

�	� ������
�
�������
���	��

��� ����
�	���	�����
���	
�

�
� ����������������
���	��

Range #2 0 to 400°C 
Order of polynomial = 8 
 
 

�
����
���� �
����������

�� ����������������
������

�� ����
�����
�����
������

	� �����������	����
����	�

�� 	����
����
�����
����
�


� �	���
���
�	�����
������

�� ����������������
������

�� �����	�����������
������

�� 
���������������
����
�

�� �	���������
�����
������

�

�

�

�




������������������������������
������

��	����������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 14 
 

�
����
���� �
����������

�� ����������������
������

�� �����	���
������
������

	� �����������	����
����	�

�� �����		�
	������
����
�


� 	��
������
�����
������

�� ��
�������������
������

�� 	�
����	��
�����
������

�� 
��������	������
������

�� 
��	��	��
������
����	�

�� ��������
		�����
����
�

��� �����
��	�������
������

��� ����������������
������

�	� ���
�
�����������
���	��

��� ��
�������������
���	
�

�
� ����������������
���	��

 
 
 
Range #0 to 400°C 
Order of polynomial = 9 
 

�
����
���� �
����������

�� �����������������������

�� ������	���
�����
������

	� ���	��
�
�������
����	�

�� ���������

�����
����
�


� ������
��
��
����
������

�� ��
����
��������
������

�� �	��

�����������
������

�� 
����
����������
����
�

�� �	��
			
��������
������

�� �	������	�
������
���		�

�

�

�



���������������	����
����
������������
���������������������������
���
�

��	����������
�
�	���

Number of ranges = 2 
Range #1 –270 to 0°C 
Order of polynomial = 13 
 

�
����
���� �
����������

�� �����������������������

�� ��	����
��������
������

	� 	�

�����	������
����	�

�� �������
���������
������


� �����	��	��������
������

�� �
����	����	�����
������

�� ����������
������
������

�� �������
��	������
������

�� �
�����	���
�����
������

�� ����	��	���������
������

��� ������
��		
�����
������

��� �
�����	��	������
���	��

�	� �����
�����������
���	��

��� �
��������
������
���	��

 
 
 
 
Range #2 0 to 1000°C 
Order of polynomial = 9 
 

�
����
���� �
����������

�� ����������������
������

�� ��	����
��������
������

	� �����������
����
����	�

�� ����������������
������


� �����������������
������

�� ���
�������
�����
������

�� �	�
��������
����
���	��

�� 	������	�
������
�������

�� �����
�	���������
������

�� 	������	�
������
���		�

 



 Appendix F  

��������	�
����

F.1 Introduction 
All activities performed by the microprocessor of the PLC are in the binary form with two 
states ‘0’ or ‘1’. The microprocessor memory generally has thousands of memory 
locations that are called words. Each word stores binary data in the form of binary digits 
orbits. ‘Bits’ is the shortened form of ‘binary digits’. Each memory work generally 
consists of 16 bits, but could be 64 bits, 32 bits, 16 bits, or even 8 bits in length. (8 bits is 
generally referred to as a Byte or more correctly, as an Octet.) 

PLCs use several numbering systems to convert user numbering information into binary 
digits for memory storage and control of outputs. Similarly, memory storage data is 
translated into the user selected numbering system for ease of interpretation. 

The five most commonly used number systems in PLCs are: 
• Binary 
• Hexadecimal 
• Octal 
• Binary coded decimal (BCD) 
• Binary coded octal (BCO) 

 
After preliminary discussions on a generalized number system, these five systems will 

be discussed below. In addition, conversion between different systems will also be briefly 
examined. 

F.2 A generalized number system 
A number system is formed by allocating symbols to specific numerical values. Any 
group of symbols can be used with the total number of symbols for a number system 
called the base of the system. The three most common bases are: 

• Binary with two symbols (0 and 1) and hence a base of 2 
• Hexadecimal with sixteen symbols (0, 1, 2...9,A, B....F) and hence a base 

of 16 



����������������	����
����
������������
���������������������������
���
�

• Decimal with ten symbols (0, l, 2...9) and hence a base of 10 
 

When numbers with different bases are being used in the same descriptive text they 
sometimes have the subscript referring to the base being used, as in 3421.1910 for a 
decimal or base 10 number. 

Numerical symbols have to be combined in a certain way to represent other 
combinations of numbers. The decimal numbering system has the structure laid out in 
Table F.1 for weighting each digit in the number 3421.1910 in a combination of numbers 
written together. 

Exponential notation is used here, where for example: 102 means 100 and to 10–3 means 
0.001. 
 

������� �	�� �	�� �	�� �	�� �	�� 
� �	��� �	��� �	��� �	��� �	���

� 	� �� �� 
� �� 
� �� �� 	� 	� 	�

Table F.1 
Decimal weighting system 

The most significant digit (or MSD) in this number is 3. This refers to the left most 
non-zero digit that has the greatest weight (103 or 1000) assigned to it. 

The least significant digit (or LSD) in this number is 9. This refers to the right most 
non-zero digit that has the least weight (10-2 or 0.01) assigned to it. 

This represents the number calculated below: 
0 × 104 + 3 × 103 + 4 × 102 + 2 × 101 + 1 × 100 + 1 × 10-1 + 9 × 10-2 + 0 × 10-3 +... 

F.3 Binary numbers 
Binary numbers are commonly used with computers and data communications because 
they represent two states – either ON or OFF. For example, the RS-232-C standard has 
two voltages assigned for indicating ON (–5 volts, say) or OFF (+5 Volts, say). Any other 
voltages outside a narrow band around these voltages are undefined. 

The word ‘bit’, referred to often in the literature, is a contraction of the words ‘binary 
digit’. 

The same principles for representing a binary number apply as in the previous section. 
For example, the number 1011.12 means the following using Table F.2: 
 

������� 
�� 
�� 
�� 
�� 
�� 
� 
��� 
��� 
��� 
��� 
���

� 	� �� 	� �� �� 
� �� 	� 	� 	� 	�

Table F.2 
Binary weighting system 

This translates into the following number: 
……..0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 20 + 1 × 2-1+ 0 × 2-2 + …….. 
The most significant bit (MSB) in the above number is the left most bit and is 1 with 
weighting of 23. The right most bit is the least significant bit (LSB) and is valued at 1 
with a weighting of 2-1. 

�




������������������
�
���
�����  

	
�
�� ��
������
�������
����������
����
����
�������

Table F.3 gives the conversion between decimal and binary numbers. Note that the binary 
equivalent of decimal 15 is written in binary form as 1111 (using 4 bits). This 4 bit binary 
grouping will have significance in hexadecimal arithmetic later. As expected binary 0 is 
equivalent to decimal 0. 
 

��������

�������

�������

�����������

	� 	�

�� ��


� �	�

�� ���

�� �		�

�� �	��

�� ��	�

�� ����

�� �			�

�� �		��

�	� �	�	�

��� �	���

�
� ��		�

��� ��	��

��� ���	�

��� �����

Table F.3 
Equivalent binary and decimal numbers 

The procedure to convert from a binary number to a decimal number is straightforward. 
For example, to convert 1101.012 to decimal, use the weighting factors for each bit to 
make the conversion. 
1101.012  = 1 × (23) + 1 × (22) + 1 × (21) + 1 × (20) + 1 × (2-1) + 1 × (2-2) 
This is equivalent to: 
1101.012  = 1 × (8) + 1 × (4) + 1 × (2) + 1 × (1) + 1 × (½) + 1 × (¼) 
This then works out to: 
1101.012  = 8 + 4 + 0 + 1 + 0.25 
1101.012  = 13.25 
The conversion process from a decimal number to a binary number is slightly more 
complex. The procedure here is to repeatedly divide the decimal number by two, until the 
quotient (the result of the division) is equal to zero. Each of the remainders forms the 
individual bits of the binary number. 

 
 
 
 
 
 
 



����������������	����
����
������������
���������������������������
���
�

For example, to convert decimal number 4310 to binary form: 
 


� ��������� �����!"#�$�


� 
�������� �����


� �	������� ���	�


� �������� �����


� 
������� ���	�


� �������� �����!%#�$�

� 	�

Table F.4 
Illustration of decimal to binary conversion 

This translates a number 4310 to 1010112 

F.4 Hexadecimal numbers 
Most of the work done with computers and data communications systems is based on the 
Hexadecimal number system, as it is easy to translate a binary number into a hexadecimal 
equivalent.  This has a base of 16 and uses the sequence of symbols: 
0, l, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F 
Hence the number of FA9.0216 would be represented as below in Table F.5: 
 

������� ���� ���� ���� ���� ���� 
� ����� ����� ����� ����� �����

� 	� 	� &� '� �� 
� 	� 
� 	� 	� 	�

Table F.5 
Hexadecimal weighting structure 

This translates into the following number: 
0 × 164 + 0 × 163 +F × 162 +A × 161 +0 × 16-1 +0 × 16-2 + …….. 
= 15 × 162 + 10 × 161+ 9 × 1+ 2 × 1/162 

= 15 × 256 + 10 × 16+ 9 × 1+ 2 /256 

= 4009.0078125 
The most significant digit (MSD) in the above number is the left most symbol and is F 
with weighting of 162. The right most symbol is the least significant digit (LSD) and is 
valued at 2 with a weighting of 16–2. 




������������������
�
���
�����  

	
�
�� ��
������
�������
���
�����
��������������

The conversion between binary and hexadecimal is effected by modifying Table F.3 to 
the table following: 
 

�������� (�)� ������� �������

	� 	� 				�

�� �� 			��


� 
� 		�	�

�� �� 		���

�� �� 	�		�

�� �� 	�	��

�� �� 	��	�

�� �� 	����

�� �� �			�

�� �� �		��

�	� '� �	�	�

��� �� �	���

�
� *� ��		�

��� �� ��	��

��� +� ���	�

��� &� �����

Table F.6 
Relationship between decimal, binary, and hexadecimal numbers 

As can be seen from the table, the binary numbers are grouped in fours for the largest 
single digit hexadecimal character or symbol. A similar approach, of grouping bits in 
fours, is followed in expressing a binary number as a hexadecimal number. 

In converting the binary number 10000100111101112 to its hexadecimal equivalent, the 
following procedure should be adopted. First, break up the binary number into groups of 
four commencing from the least significant bit. Then equate the equivalent hex symbol to 
it (derived from Table F.6 above). 
1000010011110111 becomes: 
 1000 … 0100 … 1111 … 01112 
 8  4  F  716 
Or  8 4 F 7 16 

In order to convert a hexadecimal number back to binary the procedure used above 
must be reversed. 

For example, in converting from C9A4 to binary this becomes: 
 C ... 9 ... A ... 416 
 1100 … 1001 ... 1010 ... 01002 
Or 11001001101001002 

F.5 Octal 
Some of the older computer systems used octal for their coding. This uses the sequence of 
symbols: 



����������������	����
����
������������
���������������������������
���
�

0, 1, 2, 3, 4, 5, 6, 7 
Hence, the number 23471.68 would be represented as below: 
 

������� ��� ��� ��� ��� ��� 
� ���� ���� ���� ����

� 
� �� �� �� �� 
� �� 	� 	� 	�

Table F.7 
Octal weighting structure 

This translates into the following decimal number 
2 X 84  + 3 X 83 + 4 X 82 + 7 X 81 + 1 X 80 + 6 X 8-1  = 10041.7510 

F.6 Binary coded decimal 
The Binary coded decimal approach can be used to convert decimal numbers into binary 
form and assigns four (4) binary digits to each decimal digit. 

For example, 4 decimal numbers could be represented as: 
 

� %,-��-����.������ ������

!%#�$�

"��-��-����.������ ������

!"#%$�

������� �
��
��
��
�� �
��
��
��
�� �
��
��
��
�� �
��
��
��
��

	�������	����� 	������������� 	�������	���	� 	���	���	�����
 
This is represented as four decimal numbers indicated as follows: 
0 X 23 + 1 X 22 + 0 X 21 + 1 X 20 + 0 X 23 + 1 X 22 + 1 X 21 + 1 X 20   0 X 23 + 1 X  
22 + 0 X 21 + 0 X 20 + 0 X 23 + 0 X 22 + 0 X 21 + 1 X 20 

= 5 7 4 1 10 
There is a certain amount of wastage in this coding system as the maximum 4 bit binary 

combination for BCD is 10012 or 910. The binary combinations 1010 to 1111 are unused 
(and illegal) in a BCD encoding system. 

BCD notation is useful for applications where absolute precision is required (unlike 
floating point notation which gives a high precision but no guarantee of absolute 
precision). Unfortunately, a specialized method of arithmetic operations has to be built 
into the system, as normal binary arithmetic is inadequate. 

F.7 Binary coded octal systems 
The binary coded octal system uses 8 bits to represent 3 digit octal numbers from 0008 to 
3778. This approach is not often used today. 

The largest binary coded octal number could be represented as: 
 

� %,-��-����.������ ������

!%#�$�

"��-��-����.������ ������

!"#%$�

������� 
���������
�� 
�����
�����
�� 
�����
�����
�� �

������������ ���������������� ���������������� �
 
This is represented as three octal numbers 
1 X 21 + 1 X 20    1 X 21 + 1 X 20    1 X 22 + 1 X 21 + 1 X 20 

=3  7   7 8 




������������������
�
���
�����  

F.8 Internal representation of information 
As has been discussed previously, there are two kinds of information that must be 
represented within the PLC: 

• Program information 
• Data information 

 
There are two types of data: 

• Numeric 
• Alphanumeric or characters 

	
 
�� !������������

Numeric data can be further subdivided into 
• Integers 
• Floating point numbers 

 
Each of these types must have the sign of the number encoded as well. There are a few 

methods of encoding this numeric data: 

#����������� ��

In this example, the most significant bit represents the sign bit. Hence, 2 would be 
represented in an 8-bit notation as: 
0 0 0 0 0 0 1 0 
–2 would be represented as: 
1 0 0 0 0 0 1 0 
Although easy to visualize the encoding of the number, it is not popular because of the 
complexity of performing arithmetic operations. 

/��0-��,�1�������

The approach here is to take the mathematical complement of the number to derive its 
negative value. For example, the number 2 would have the representation of: 

0 0 0 0 0 0 1 0 
The representation for –2 would be (complementing the above byte): 
1 1 1 1 1 1 0 1 
(The MSB is still the sign bit and in this example, it is 1 indicating a negative number.) 
Unfortunately with this approach, the rules of normal binary arithmetic do not work if 

the signs are different. 

23,0-��,�1�������

This is probably the most effective approach and its calculation is as follows: 
• Take the number and complement each bit. 
• Add ‘1’ to the least significant bit. 

 
For example: 
 ‘+2’ is represented as:    0000 0010 
 ‘–2’ is represented as (1’s complement)  1111 1101 
 (2’s complement)    1111 1110 



��	�������������	����
����
������������
���������������������������
���
�

A check to see whether this is correct is to add +2 to –2 (to achieve) 
 Add ‘+2’ to ‘–2’ 0000 0010 
    1111 1110 
    0000 0000 
The carry 1 at the end of the operation is thrown away 

&�����,����������-�

The principle of floating point notation is to allocate parts of the word to the mantissa, the 
mantissa’s sign, the exponent and the exponent’s sign.   

The mantissa must be normalized to a number between 2–1 and 1 
In the representation here, eight (8) bits are allocated to the exponent, including sign 

and 32 bits to the mantissa including sign: 
 

	� ������������������� �� ����������������

#���� +)1,����� #���� %����--��

	
 
�� "�#��
��������������#����
�����
�

Two standards have evolved for encoding alphanumeric symbols. These are the ASCII 
and EBCDIC notations. ASCII is probably the most popular, with 128 possible unique 
characters. Although 7 bits are used to represent all the ASCII characters, the eighth bit is 
used to encode the parity information. This ensures full utilization of the 8-bit byte. There 
is an extended ASCII version available which uses full 8-bits. This is not very common 
with PLCs. 

F.9 Binary arithmetic  

'  ���,��

Knowledge of binary addition is useful although it can be cumbersome.  It is based on the 
following four combinations of adding binary numbers: 

0 0  1 1 
0 1 0 1 
0 1 1 0 and carry 1 
The carry 1 (or bit) is the only difficult part of the process. This addition of the 

individual bits of the number should be done sequentially from the LSB to the MSB (as in 
normal decimal arithmetic). 

An example of addition is given below. 
10100010012 
00111010102 
11011100112 

#��������,��

The most commonly used method of binary subtraction is to use 2’s complement. This 
means that instead of subtracting two binary numbers (with the attendant problems such 
as having ‘carry out’ bits), the addition process is applied. 

For example, take two numbers and subtract the one from the other as follows: 
 
  




������������������
�
���
����
  

12 which is equivalent to:       1100 
 –4 Subtrahend   – 0100 
 8 Result           1000 

 
The two’s complement (as discussed earlier) is found by first complementing all the 

bits in the subtrahend and then adding 1 to the least significant bit. 
Complementing the number results in 0100 becoming: 1011 
Adding 1 to the least significant bit gives a two’s complement number of: 1100. 
Add 11002 to 11002 as follows: 
  1100 
  1100 
  1000 carry 1 
(Drop the carry 1 to achieve the same result as above.) 

+)���-���4/5�!6/5$�

Exclusive–OR is a procedure very commonly used with binary numbers in the error 
detection sequences of data communications. The result of an XOR operation on any two 
binary digits is the same as the addition of two digits without the carry bit. 
Consequently, this operation is sometimes also called the Modulo–2 adder. The truth 
table for XOR is shown below. 
 

������ ����
� 6/5�

	� 	� 	�

	� �� ��

�� 	� ��

�� �� 	�

Table F.8 
Exclusive OR truth table 



Appendix G  

�����������	

���
���
�����
��

����������
����
��

AC Addressed Command 
ACDS Accept Data State 
ACG Addressed Command Group 
ACRS Acceptor Ready State 
AD Addressed 
AH Acceptor Handshake 
AH1 Complete Capability 
AH10 No Capability 
AIDS Acceptor Idle State 
ANRS Acceptor Not Ready State 
APRS Affirmative Poll Response State 
ATN Attention 
AWNS Acceptor Wait for New Cycle State 
 
C Controller 
CACS Controller Active State 
CADS Controller Addressed State 
CAWS Controller Active Wait State 
CIDS Controller Idle State 
CPPS Controller Parallel Poll State 
CPWS Controller Parallel Poll Wait State 
CSBS Controller Standby State 
CSNS Controller Service Not Requested State 
CSRS Controller Service Requested State 
CSWS Controller Synchronous Wait State 
CTRS Controller Transfer State 
 
DAB Data Byte 
DAC Data Accepted 
DAV Data Valid 



���������	�	
���
�����������������������������������������������

DC Device Clear 
DCAS Device Clear Active State 
DCIS Device Clear Idle State 
DCL Device Clear Local 
DD Device Dependent 
DIO Data Input/Output 
DT Device Trigger 
DTAS Device Trigger Active State 
DTIS Device Trigger Idle State 
 
END End 
EOI End or Identity 
EOS End of String 
 
F Active False 
(F) Passive False 
 
GET Group Execute Trigger 
GTL Go to Local 
GTS Go to Standby 
 
IDY Identify 
IFC Interface Clear 
IST Individual Status 
 
L Listener 
LE Extended Listener 
LACS Listener Active State 
LADS Listener Addressed State 
LAG Listener Address Group 
LIDS Listener Idle State 
LLO Local Lockout 
LOCS Local State 
LON Listen Only 
LPAS Listener Primary Addressed State 
LPE Local Poll Enable 
LPIS Listener Primary Idle State 
LTN Listen 
LUN Local Unlisten 
LWLS Local with Lockout State 
 
M Multiline 
MLA My Listen Address 
MSA My Secondary Address 
MTA My Talk Address 
 
NBA New Byte Available 
NDAC Not Data Accepted 
NPRS Negative Poll Response State 
NRFD Not Ready for Data 
NUL Null Byte 
 
OSA Other Secondary Address 
OTA Other Talk Address 
 



	�����
����������������� ����������������� ��������������!�������"#����� 

PACS Parallel Poll Addressed to Configure State 
PCG Primary Command Group 
POFS Power Off State 
PON Power On 
PP Parallel Poll 
PPAS Parallel Poll Active State 
PPC Parallel Poll Configure 
PPD Parallel Poll Disable 
PPE Parallel Poll Enable 
PPIS Parallel Poll Idle State 
PPR Parallel Poll Response 
PPSS Parallel Poll Standby State 
PPU Parallel Poll Unconfigure 
PUCS Parallel Poll Unaddressed to Configure State 
 
RDY Ready 
REMS Remote State 
REN Remote Enable 
RFD Ready for Data 
RL Remote/Local 
RPP Request Parallel Poll 
RQS Request Service 
RSC Request System Control 
RSV Request Service 
RTL Return to Local 
RWLS Remote with Lockout State 
 
SACS System Control Active State 
SCG Secondary Command Group 
SDC Selected Device Clear 
SDYS Source Delay State 
SE Secondary 
SGNS Source Generate State 
SH Source Handshake 
SIAS System Control Interface Clear Active State 
SIC Send Interface Clear 
SIDS Source Idle State 
SIIS System Control Interface Clear Idle State 
SINS System Control Interface Clear Not Active State 
SIWS Source Idle Wait State 
SNAS System Control Not Active State 
SPAS Serial Poll Active State 
SPD Serial Poll Disable 
SPE Serial Poll Enable 
SPIS Serial Poll Idle State 
 
SPMS Serial Poll Mode State 
SR Service Request 
SRAS System Control Remote Enable Active State 
SRE Send Remote Enable 
SRIS System Control Remote Enable Idle State 
SRNS System Control Remote Enable Not Active State 
SRQ Service Request 
SRQS Service Request State 
ST Status 



���������	�	
���
�������������������������������������������	���

STB Status Byte 
STRS Source Transfer State 
SWNS Source Wait for New Cycle State 
 
T Active True 
(T) Passive True 
TE Extended Talker 
TACS Talker Active State 
TADS Talker Addressed State 
TAG Talk Address Group 
TCA Take Control Asynchronously 
TCS Take Control Synchronously 
TCT Take Control 
TIDS Talker Idle State 
TON Talk Only 
TPAS Talker Primary Addressed State 
TPIS Talker Primary Idle State 
 
U Uniline Message 
UC Universal Command 
UCG Universal Command Group 
UNL Unlisten 
UNT Untalk 



Index
A/D converter see I/O 
ADC see I/O 
Amplification see  Signal conditioning 
Analog signals: 

AC signals  16 
DC signals  15 

Analog to digital converter see  I/O 
ASCII: 

composition  178 
control codes  178 

Asynchronous see  Data transmission 
Attachment unit interface  

see  Ethernet 
A to D converter see I/O 
AUI see Ethernet 
 
Baud rate see Data transmission 
Bias resistors  55 
Binary signals see Digital signals 
Bit rate see Data transmission 
Breakout box  201 

see also EIA-232 
 
Cable: 

coaxial  66 
communications cabling  3 
shield grounding  62 
shielding  61–4 
terminator  66 
twisted pair  64 

Closed loop control: 
A/D board requirements: 

control algorithms  286–8 
deadband  289  
definitions  285 
manual control  289 
output limiting  289 
transient response  288–9 

CMRR see Common mode voltages 
Coax see Coaxial cable 
Coaxial cable  66  

see also Cable  
Common mode voltages: 

common mode rejection ratio 
(CMRR)  51 

definition  50 
input voltage limits  51  

CompactPCI see Expansion bus standards 
Computer: 

host  5 
multitasking  6 
operating system  6 
streaming  6 
system memory  6 
terminate-and-stay-resident  
(TSR) 6 

Controllers: 
distributed   9 
stand-alone   9 

CSMA/CD 260–3  
see also Ethernet 

Current loop see 20 mA  194 
 
DAC see I/O 
D/A converter see I/O 
Data capture see Transient data capture 
Data transfer:   

data transfer speed   96     
DMA see Direct memory access 
polled data transfer  84 

Data transmission (asynchronous): 
baud rate   182 
bit rate  182 
data bits  182 
format  181 
speed  182 
start bit  182 
stop bits  182 

DCE see EIA-232   
Differential see Measurement 
Digital signals:    

digital pulse trains  14 
transistor-transistor logic (TTL) 14  

Digital to analog converter see I/O 
Direct memory access:  

initialization required for  79 
I/O devices requesting  79 
modes: 

circular buffer  81 
dual channel gap-free  81 
normal  81 

 see also Computer controllers  78 
DMA see Direct memory access 
DTE see EIA-232  



404 Index 

Duplex: 
full duplex  178 
half duplex  178  

 
EIA-232: 

circuit functions  187 
connectors:  

DB-9  186 
DB-25  186 

control lines: 
CTS  185 
DSR  185 
DTR  185 
RTS  185 

data lines:  
EIA-232-C  183 
EIA-232-D  183 
EIA-232-E  183 
RX  185 
TX  185 

handshaking: 
hardware  185 
software  185 

line drivers  183 
main features  190 
pin assignments  186  
special secondary functions  185 
transmission rates  185 
troubleshooting  

breakout box  201 
general approach  200–1 
loop back plug  202 
null modem  201 
protocol analyzer  202 

EIA-485: 
bias resistors  192 
comparison with EIA-232  194 
repeaters  192 
specifications  192  
terminators  192 

EMS see Expanded memory system 
Error detection: 

block redundancy checks  199 
character redundancy checks: 

cyclic redundancy checks  199 
even parity  199 
odd parity  199 

Ethernet: 
10Base2  256–7 
10Base5 253–6 

10BaseF  258 
10BaseFB  258 
10BaseFL  258 
10BaseFP  258 
100Base-FX  258–9   
100Base-T2  258–9 
100Base-T4  258–9 
100Base-TX  258–9 
5-4-3-2 rule  267 
AUI  254–5 
cable grounding  268 
CSMA/CD  260–3  

see also Medium access control 
design rules  265–8 
IEEE802.3  252–3, 265 
MAC frame format  263–4 
MAU see Media attachment unit 
media attachment unit  254 
medium access control  260–3 
repeater rules  267–8 
ThickNet see Ethernet-10Base5 
Thinnet see Ethernet-10Base2 
signal quality error (SQE)  256 
slot time   261 

Excitation see Signal conditioning 
Expanded memory system  98 
Expansion bus standards: 

bus hardware considerations:  
address decoding  115 
capacitive loading  115 
CompactPCI bus  109 
EISA bus  108 
ISA bus  99 
Microchannel bus  108 
PCI bus  109 
PXI bus  109 
timing  116 

Extended memory  99 
     
Fieldbuses  268–70 
Field wiring  3 
Filters: 

attributes:   
cut-off frequency  38 
Q-factor  39 
roll-off  38 

    types: 
band pass (selective)  41 
band stop (notch)  42 
Butterworth  42 



Index  405 

high pass  40 
low pass  39 

see also Signal conditioning 
Full bridge see Wheatstone bridge 
Full duplex see Duplex 
 
GPIB   11  

see also IEEE-488 
Ground loops  53 
 
Half bridge see Wheatstone bridge 
Half duplex see Duplex 
 
IEEE-488: 

addressing  242 
bus structure 238–40 
device types: 

controllers   238 
handshaking   240–1 
listeners   238 
talkers   238 

IEEE 488-1   235 
IEEE 488-2   235, 243–8 

IEEE802.3 see Ethernet 
Input/output see I/O 
Interference see Noise 
I/O: 

functions: 
A/D converter   7, 15 
D/A converter  7,16 
distributed   8 

plug-in  7 
Interrupts: 

hardware interrupts  72–3 
interrupt allocations  74 
interrupt controllers   73 
interrupt request handling  75 
interrupt service routines  76 
interrupt sharing  77 
maskable interrupts  72–3 
non-maskable interrupts  72–3 

ISA bus see Expansion bus standards 
Isolation  

opto-isolation  54 
transformer isolation  54 
see also Signal conditioning 

 
Line drivers  183 
Linearization see Signal conditioning 
Loggers see Loggers/controllers 

Loggers/controllers: 
hardware (stand-alone operation): 

analog inputs  215 
command formats (ASCII based)   222 
communications bottlenecks  219 
communications interface RS-232  217 
communications interface RS-485  219 
data formats (ASCII based)  223 
digital I/O  215 
Ethernet connection   220 
firmware   220 
memory   210 
microprocessors   210 
power management circuitry   214 
power supply  213 
real-time clock   211 
UART   212 
watchdog timer   214 

      modes of operation: 
direct connection to PC   206 
distributed   9 
remote connection to PC 206 
stand-alone  9, 206 
using PCMCIA cards  205 

software: 
channel commands  224 
design  221 
error reporting  223 
host software   230 
schedules  226 
system commands  224 

 
Manchester encoding  260 
Measurement: 

differential   50, 52 
single-ended  50, 52 
ungrounded signal sources  54    

Medium access control  260–3 
Memory: 

base memory  97 
expanded memory system  98 

Microchannel bus see Expansion bus standards 
 
Noise: 

coupling mechanisms: 
capacitive coupling  57 
conductive  coupling  57 
definition  56 
inductive  coupling  57 
sources  56 



406 Index 

Open loop control  285  
see also Closed loop control 

Operating systems: 
DOS  68 
graphical user interface (GUI)  70 
Microsoft Windows 69 
multitasking  70 
UNIX 

UNIX file system  72 
UNIX shell  72 

Virtual memory  71 
Virtual tools  71 

 
Parity: 

even parity  181 
mark parity  181 
odd parity  181 
space parity  181 

PCI bus see Expansion bus standards 
PCMCIA: 

features  293–8 
hardware  298–302 
software  302–4 

Polled data transfer see Data transfer 
Polynomial compensation see Thermocouples 
Protocols: 

ASCII based protocols  196  
flow control protocols: 

ETX/ACK  196 
XON/XOFF  196 

functions  195 
PXI bus see Expansion bus standards 
 
Q-factor see filters 
 
Resistance temperature detectors: 

alpha  19 
characteristics  19 
linearity  19 
measurement circuits: 

four-wire   21 
self-heating  21 
three-wire  21 
two-wire  20 

RS-232 see EIA-232 
RS-485 see EIA-485 
RTD see Resistance temperature detector 
 
SCPI  248–51 
 

Sensors  3 
see also Transducers  

Serial interface converters  194 
Shielded cable see Cable 
Signal conditioning: 

amplification  4, 37 
classes 44–8 
direct connect modular-two-wire 

 45–6 
distributed I/O-digital transmitters 

 46–8 
excitation   4 
filtering  4, 38  

see also Filters    
isolation   4, 37 
linearization   4 
plug-in board  44 

Signal sources: 
floating (ungrounded)  48 
grounded  48 

Simplex  177 
Start bit see Data transmission 
Stop bit see Data transmission 
Strain gauge  28 
 
Terminator see Cable 
Thermistors   22 
Thermocouples: 

compensation cables  24 
construction  26 
exposed junctions  26 
grounded-junction  26 
hardware compensation   23 
isothermal block  24 
linearization  24 
measurement errors  26 
reference junction compensation 23 
software compensation   24 
specifications  25 
types and standards  25 
ungrounded-junction  26 
wiring configurations  27 

Transducers: 
active transducers  3,17 
characteristics  

accuracy  18 
sensitivity  18 
range  18 
repeatability  18 
passive transducers  3,17 



Index  407 

Transient data capture: 
A/D board requirements   290 
trigger modes  290 
trigger sources  290 

Transistor-transistor logic  14 
see also Digital signals  

Troubleshooting see EIA-232 
TTL see Transistor-transistor logic 
Twisted-pair cable see Cable 
 
UART  181 
Universal serial bus (USB): 

application layer   283 
bulk transfer   282 
cables   274, 278 
connectors   274, 278  
control transfer   282 
data link layer   281 
external hubs   274 
host hubs   273 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

interrupt transfer   282 
isochronous transfer   282 
physical layer   277–8 
topology   272–3 

     
Wheatstone bridge: 

active element  29 
balance  29 
completion resistors  29 
full bridge configuration  32 
half-bridge configuration  31 
measurement errors  34 
quarter bridge configuration  30 
temperature considerations  34 
wiring connections  32 

Wiring see Field wiring 
 
XMS see Extended memory 
XON/XOFF see Protocols 
 
 
 



WHO ARE WE?
IDC Technologies is internationally acknowledged as the premier
provider of practical, technical training for engineers and technicians.

We specialise in the fields of electrical systems, industrial data
communications, telecommunications, automation & control,
mechanical engineering, chemical and civil engineering, and are
continually adding to our portfolio of over 60 different
workshops. Our instructors are highly respected in their fields of
expertise and in the last ten years have trained over 50,000
engineers, scientists and technicians.

With offices conveniently located worldwide, IDC Technologies
has an enthusiastic team of professional engineers, technicians
and support staff who are committed to providing the highest
quality of training and consultancy.

TECHNICAL WORKSHOPS
TRAINING THAT WORKS  
We deliver engineering and technology training that will
maximise your business goals. In today's competitive
environment, you require training that will help you and your
organisation to achieve its goals and produce a large return on
investment. With our "Training that Works" objective you and
your organisation will:

• Get job-related skills that you need to achieve your business goals

• Improve the operation and design of your equipment and plant

• Improve your troubleshooting abilities

• Sharpen your competitive edge

• Boost morale and retain valuable staff

• Save time and money 

EXPERT INSTRUCTORS  
We search the world for good quality instructors who have three
outstanding attributes:

1. Expert knowledge and experience – of the course topic

2. Superb training abilities – to ensure the know-how is transferred
effectively and quickly to you  in a practical hands-on way

3. Listening skills – they listen carefully to the needs of the
participants and want to ensure that you benefit from the
experience

IDC Technologies produce a set of 4 Pocket Guides used by 
thousands of engineers and technicians worldwide.

Each and every instructor is evaluated by the delegates and we
assess the presentation after each class to ensure that the
instructor stays on track in presenting outstanding courses. 

HANDS-ON APPROACH TO TRAINING
All IDC Technologies workshops include practical, hands-on
sessions where the delegates are given the opportunity to apply
in practice the theory they have learnt.

REFERENCE MATERIALS
A fully illustrated workshop book with hundreds of pages of
tables, charts, figures and handy hints, plus considerable
reference material is provided FREE of charge to each delegate.

ACCREDITATION AND CONTINUING EDUCATION
Satisfactory completion of all IDC workshops satisfies the
requirements of the International Association for Continuing
Education and Training for the award of 1.4 Continuing
Education Units. 

IDC workshops also satisfy criteria for Continuing Professional
Development according to the requirements of the Institution of
Electrical Engineers and Institution of Measurement and Control
in the UK, Institution of Engineers in Australia, Institution of
Engineers New Zealand, and others.

CERTIFICATE OF ATTENDANCE
Each delegate receives a Certificate of Attendance documenting
their experience.

100% MONEY BACK GUARANTEE
IDC Technologies’ engineers have put considerable time and
experience into ensuring that you gain maximum value from
each workshop. If by lunch time of the first day you decide that
the workshop is not appropriate for your requirements, please let
us know so that we can arrange a 100% refund of your fee.

ONSITE WORKSHOPS
All IDC Technologies Training Workshops are available on an
on-site basis, presented at the venue of your choice, saving
delegates travel time and expenses, thus providing your company
with even greater savings. 

OFFICE LOCATIONS
AUSTRALIA • CANADA • IRELAND • NEW ZEALAND • SINGAPORE •
SOUTH AFRICA • UNITED KINGDOM • UNITED STATES

Vol. 1 - ELECTRONICS

Vol. 2 - ELECTRICAL

Vol. 3 - COMMUNICATIONS

Vol. 4 - INSTRUMENTATION

Visit our Website for FREE Pocket Guides

idc@idc-onl ine .com   •    www.idc-onl ine .com

To download a FREE copy of these internationally best selling pocket guides go to:
www.idc-online.com/freedownload/

THIS BOOK WAS DEVELOPED BY IDC TECHNOLOGIES


	front cover
	copyright
	Preface
	Contents
	1. Introduction
	2. Analog and digital signals
	3. Signal conditioning
	4. The PC for real time work
	5. Plug-in data acquisition boards
	6. Serial data communications
	7. Distributed and stand-alone loggers/controllers
	8. IEEE 488 standard
	9. Ethernet LAN systems
	10. The universal serial bus (USB)
	11. Specific techniques
	12. THE PCMCIA Card
	Appendix A: Glossary
	Appendix B: IBM PC bus specifications
	Appendix C: Review of the Intel 8255 PPI chip
	Appendix D: Review of the Intel 8254 timer-counter chip
	Appendix E: Thermocouple tables
	Appendix F: Number systems
	Appendix G: GPIB (IEEE-488) mnemonics and their definitions
	Index

