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Binary Numbers 

Introduction 

In the decimal number system there are ten digits 0 to 9, the true significance of any digit 

depending on its position in the number: for example -  

Thousands Hundreds Tens Units 

2 4 3 1 

really means : 

(2 x 103) + (4 x 102) + (3 x 101) + (1 x 100) 

Remembering that 100 = 1 we see that, counting the units column as No. 0, the tens as No. 1 

and so on, the value of a digit is equal to that digit multiplied by ten (called the 'radix' of the 

system) raised to a power equal to the column number. In general a digit 'a' has a value A 

given by 

A = a x rn 

Where r = the radix (ten in this case) 

and n = the column number.  

Now imagine that we had only five digits available or in other words that the symbols 5, 6, 7, 

8 and 9 did not exist. Our counting would have to be done with the only digits known to us, 

that is 0, 1, 2 3 and 4 so that our number system would have a radix of five. 

r = 5 

and the values of 'a' would be restricted to : 

a = 0, 1, 2, 3 or 4 

This system would be called a 'quinary' system. 

Then, for example, digit 2 in column No. 3 has a value 

2 x 53 = (in decimal equivalent) 250 

In digital computer engineering a quinary system is not convenient, for many reasons, (see 

Practical Aspects in this Theory) to employ devices to represent decimal or even quinary 

numbers as each device would have to be capable of taking up ten or five distinct states. 

Instead the number of states is restricted to the smallest that will allow a change, that is two, 

and these are commonly denoted by digits 0 to 1. 
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This then is the 'binary' system whose radix is two, hence has only two numerals, (0 and 1). 

The first five columns in a binary system have decimal values: 

20 = 1,   21 = 2,   22 = 4,   23 = 8,   24 = 16. 

Thus the binary number 1 0 1 1 0 = decimal 1 x 16 + 0 x 8 + 1 x 4 + 1 x 2 + 0 x 1 = 2210  

The small suffix ten in this result is to indicate that the number is a decimal one. Sometimes 

confusion can arise otherwise, e.g 1 0 110 = one hundred and one in decimal but 1 0 12 = 510 

Thus we should have written above:  

1 0 1 1 02 = 2210 

Binary Decimal Code 

The words 'binary digit' are usually abbreviated to 'bit'. A four-bit number can represent 24 = 

16 different numbers but the maximum number is 24 - 1 = 15 because zero is included in the 

16 possibilities. 

Although computers use binary numbers internally, operators are more accustomed to 

interpreting decimal numbers. 

Thus when numbers have to be fed in via a keyboard or fed out to an electric typewriter or to 

decimal indicators it is convenient to use a system in which the individual decimal digits are 

separately represented by binary instead of as a whole. For example : 

2610 = 110102 (standard binary) 

 

Such a system is called 'binary decimal' or 'binary-coded decimal'; BCD for short. 

Obviously, to be able to represent all digits up to 9 there must be four bits to each decimal 

column so two groups of four bits can represent all numbers from 0 to 99. 
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Converting Decimal to Binary 

The conversion process from decimal to binary is very simple. By dividing the decimal value by 

2, the remaining figure (either 1 or 0) will represent the binary figure. For example, consider 

the decimal figure of 157 : 

157 / 2 = 78, with a remainder of 1 

  78 / 2 = 39, with a remainder of 0 

  39 / 2 = 19, with a remainder of 1 

  19 / 2 = 9,   with a remainder of 1 

   9 / 2 = 4,   with a remainder of 1 

   4 / 2 = 2,   with a remainder of 0 

   2 / 2 = 1,   with a remainder of 0 

   1 / 2 = 0,   with a remainder of 1 

The binary representation is read from bottom to top hence, for the decimal sum 157, it binary 

representation is, 10011101 

Practical Aspects 

In electronic digital computers using integrated circuits the binary states are represented by 

voltages whose range rarely exceeds 5 volts. Usually Binary 0 is represented by a voltage near 

zero and Binary 1 by one near +5V. 

There is always some variation in these voltages in practice and so the rule is made that any 

voltage between, say 0V and +0.4V will be called binary 0 and any between say +2.4V and 

+5V will be called binary 1.  

In these circumstances you can see that, even disregarding the problems of setting the 

nominal values of voltage to more than two levels it would be impossible to maintain them 

within non-overlapping bounds when the tolerances were accounted for. This is one reason 

why decimal number systems are not used. 

Another is, as we shall see later on in the Binary Addition assignment, that binary arithmetic is 

very much simpler than decimal. 

The BCD system is usually restricted to inputs and outputs but there have been several 

computers built which use it throughout for all arithmetic and other operations. 
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Logic Gates 

Logic circuits are used extensively in digital electronics. The basic logic gates, AND, OR, NAND 

and NOR are designed to be interconnected into larger, more complex, circuit arrangements. 

An understanding of how these circuits operate is an essential pre-requisite to understanding a 

wide range of digital circuits and systems. 

The AND Gate 

AND gates will only produce a logic 1 output when all inputs are simultaneously at logic 1. Any 

other input combination results in a logic 0 output. The Boolean expression for the output, Y, 

of an AND gate with inputs, A and B, is : 

Y = A.B 

The operation of a simple AND gate can be illustrated by connecting two switches in series with 

a battery and a lamp. It should be obvious that the lamp will only operate when both switches 

(S1 AND S2) are closed*. 

The OR Gate 

OR gates will produce a logic 1 output whenever any one, or more, inputs are at logic 1. 

Alternatively, an OR gate will only produce a logic 0 output whenever all of its inputs are 

simultaneously at logic 0. The Boolean expression for the output, Y, of an OR gate with inputs, 

A and B, is : 

Y = A+B 

The operation of a simple OR gate can be illustrated by connecting two switches in parallel and 

then connecting this arrangement in series with a battery and a lamp. The lamp will operate 

when either of the two switches (S1 OR S2) are closed*. 

* : in both the AND and OR gates, each switch can only be in one of the two states (i.e., open 

or closed) at any given time, the open and closed conditions are mutually exclusive. 

Furthermore, since a switch cannot exist in any other state than completely open or completely 

closed (i.e., there is no intermediate or half-open state) the circuit is based on binary or 'two-

state'  logic.  
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The NAND Gate 

NAND (i.e., NOT-AND) gates will only produce a logic 0 output when all inputs are 

simultaneously at logic 1. Any other input combination will produce a logic 1 output. A NAND 

gate, therefore, is nothing more than an AND gate with its output inverted! The circle shown at 

the output of the NAND gate symbol denotes this inversion. The Boolean expression for the 

output, Y, of a NAND gate with inputs, A and B, is : 

Y =  

The NOR gate 

NOR (i.e., NOT-OR) gates will only produce a logic 1 output when all inputs are simultaneously 

at logic 0. Any other input combination will produce a logic 0 output. A NOR gate, therefore, is 

simply an OR gate with its output inverted. The circle shown at the output of the NOR gate 

symbol denotes this inversion. The Boolean expression for the output, Y, of a NOR gate with 

inputs, A and B, is : 

Y =  

Exclusive OR gate 

Exclusive-OR gates will produce a logic 1 output whenever either one of the inputs is at logic 

1 and the other is at logic 0. Exclusive-OR gates produce a logic 0 output whenever both 

inputs have the same logical state (i.e., when both are at logic 0 or both are at logic 1).  The 

Boolean expression for the output, Y, of an exclusive-OR gate with inputs, A and B, is: 

Y =  

Exclusive NOR gate 

Exclusive-NOR gates will produce a logic 0 output whenever either one of the inputs is at 

logic 1 and the other is at logic 0. Exclusive-NOR gates produce a logic 1 output whenever both 

inputs have the same logical state (i.e., when both are at logic 0 or both are at logic 1).  The 

Boolean expression for the output, Y, of an exclusive-NOR gate with inputs, A and B, is: 

Y =  

Buffers 

Buffers do not affect the logical state of a digital signal, i.e., a  logic 1 input results in a logic 1 

output whereas a logic 0 input  results in a logic 0 output. Buffers are normally used to provide 

extra current drive at the output but can also be used to regularise the logic levels present at 

an interface. The Boolean expression for the output, Y, of a buffer with an input, X, is : Y = X 
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Basic Logic Functions 

 

AND  OR  NAND  NOR 

Y is true if 

A and B are true 

 Y is true if 

A or B is true 

 Y is false if 

A and B are true 

 Y is false if 

A or B is true    

       

   

   

   

   

Y = A.B  Y = A+B  Y = A.B  Y – A+B 

A B Y  A B Y  A B Y  A B Y 

0 0 0  0 0 0  0 0 1  0 0 1 

0 1 0  0 1 1  0 1 1  0 1 0 

1 0 0  1 0 1  1 0 1  1 0 0 

1 1 1  1 1 1  1 1 0  1 1 0 

The NAND gate is almost universally used in integrated circuit logic although all types of 

operation can be obtained. Design tools and techniques are better adapted to the use of the 

three fundamental operations of OR. AND, NOT, hence methods of converting the resulting 

expressions to the exclusive use of NAND have to be used. 

Inverters 

Inverters are used to complement the logical state (i.e., a logic 1 input results in a logic 0 

output and vice versa). Inverters also provide extra current drive and, like buffers, are used in 

interfacing applications where they provide a means of regularising logic levels present at the 

input or output of a digital system. The Boolean expression for the output, Y, of an inverter 

with an input, A, is :  Y = A 

NOT    

Y is true if A is false Y = NOT A 

  
 

 A Y 

 1 0 

  0 1 

 

A 
 

B 

Y A 
 

B 

Y A 

 
B 

Y A 

 
B 

Y 

A Y 
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Basic Logic Operations 

The first chapter demonstrated that binary numbers comprise of a collection of binary digits, or 

bits, each of which can be either 0 or 1. 

These values can be represented in hardware by various means including toggle switch 

positions and lamp states. Whilst these can be used to represent the binary variables, they can 

also be used to represent quite different things. For example, 1 and 0 can represent any of the 

pairs of opposites shown in the following table : 

“1” “0” 

TRUE FALSE 

IN OUT 

UP DOWN 

YES NO 

WET DRY 

 

In general, binary variables can represent any pair of concepts in which the existence of one 

implies the non-existence of the other. Notice carefully the idea of “opposite-ness or “NOT-

ness”. 

“1” is NOT “0” 

FALSE is NOT TRUE 

TRUE is NOT FALSE 

UP is NOT DOWN 

“0” is NOT “1” 

etc, etc 

The ideas of true and false have a particularly close association historically with the 

development of algebraic methods of dealing with binary variables, the earliest application 

being the study of formal logic. This is why computer circuits are referred to as logic elements 

and why we use the term “truth table”. 

The algebra that is used to describe the various operations is called “Boolean Algebra” within 

which the variables are denoted by letters, e.g. A, B, C, etc., or X, Y, Z. The difference is that 

whereas in ordinary algebra A could be any value at all, in Boolean Algebra it can only be 

either 0 or 1. 

A = 0  or A = 1 

The operator of NOT can be applied to a single variable as : NOT A. This is called the 

“complement” or “negation” of A and is usually symbolised by a bar over the variable. 

NOT A = A 
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The Truth Table for NOT can now be written in a more general fashion, hence : 

A A 

0 1 

1 0 

If we consider applying this to applications with more than one variable, for example, A and B, 

the Truth Table for the NAND function will be : 

A B Y 

0 0 1 

0 1 1 

1 1 0 

1 0 1 

By associating 1 with true and 0 with false, Z could be described as being true when it was not 

true that A and B were both 1, or, put more simply ; 

Z = NOT (A and B) 

NOT-AND is usually abbreviated to NAND so we have 

Z = A NAND B 

Even this abbreviated notation is not very convenient and hence the notation A.B is adopted to 

mean A AND B, and may be written as : 

Y = NOT A.B = A.B 

Using the bar notation. When no ambiguity is possible, the dot is frequently dropped to give 

just AB. 

The Truth Table for AND provides some important basic identities that assists the manipulation 

of Boolean Expressions. 

0.0 0  

0.1 0  

1.0 0  

1.1 1  

0.1 1.0 0 

It is clear from the table that AB and BA are the same thing. An expression like this is called a 

“logical product” because of its similarity to arithmetic multiplication. 
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Digital Logic Functions 

Simple logic functions can be constructed using a hypothetical lamp circuit. Using standard 

binary notation for the status of the switches and lamp (0 for “off” and 1 for “on”), a truth 

table can be made to show how logic works. 

 

 

In Fig, 1 the lamp will come on if either contact A OR contact B is actuated.  

Truth Table - OR Gate 

A B Output 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

The AND logic function can be mimicked by connecting the two contacts in series instead of 

parallel (see Fig. 2) 

 

The lamp will come on only if contacts A AND B are actuated.  

Truth Table - AND Gate 

A B Output 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

L1 L2 

A B 
1 

Fig. 2 

2 
A 
 

B 

Symbol 

L1 L2 

A 

B 

1 

Fig. 

1 

A 
 

B 

Symbol 
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The logical inversion, or NOT, function can be performed on a contact input by using a 

normally-closed contact instead of a normally-open contact. 

 

A Output 

0 1 

0 0 

In Fig, 3 the lamp will come on if the contact is NOT actuated, and switches off when the 

contact is actuated.  

If we take the OR function and invert each “input” through the use of normally-closed 

contacts, we will end up with a NAND function. In Boolean Algebra, this effect of gate function 

identity changing with the inversion of input signals is described by DeMorgan’s Theorem 

(described in the following pages) 

 

In Fig, 4 the lamp will come on if either contact A OR contact B is un-actuated. It will only go 

off if both contacts are actuated simultaneously. 

L1 L2 

A 
1 

Fig. 3 

Symbol 

A 

L1 L2 

A 

B 

1 

Fig. 

4 

A 

B 

Symbol 

or 

A 
 

B 

A   B   
Output 

0   0       1 

0   1       1 

1   0       1 

1   1       0 
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Likewise, if we take our AND function and invert each “input” through the use of normally-

closed contacts, the result will be a NOR function : 

 

When ladder circuits are compared with their logic gate counterparts, the following is revealed: 

 parallel contacts are equivalent to an OR gate 

 series contacts are equivalent to an AND gate 

 normally-closed contacts are equivalent to a NOT gate 

Combination logic functions can be also built by grouping contacts in series-parallel 

arrangements. The following examples demonstrate an EXCLUSIVE-OR function constructed 

from a combination of AND, OR and inverter (NOT) gates : 

 

L1 L2 

A B 
1 

Fig. 5 

2 

Symbol 

A 

B 

A 

B 

or A   B   
Output 

0   0       1 

0   1       0 

1   0       0 

1   1       0 

L1 L2 

A 

B 

1 

Fig. 

6 

Symbol 

A   B Output 

0   0       0 

0   1       1 

1   0       1 

1   1       0 

2 

3 4 

A 

B 

or 

A 

B 
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In Fig. 6 (previous page) : 

 the top rung (NC contact A in series with NO contact B) is the equivalent of the top 

NOT/AND gate combination 

 the bottom rung (NO contact A in series with NC contact B) is the equivalent of the 

bottom NOT/AND gate combination. 

 the parallel connection between the two rungs at wire no. 2 forms the equivalent of the 

OR gate, by allowing the output from either the top OR bottom rungs to energise the 

lamp  

To make the EXCLUSIVE-OR function, two contacts per input are used, one for the direct input 

and the other for the “inverted” input. The two “A” contacts are physically actuated by the 

same mechanism, as are the two “B” contacts. The common association between the contacts 

is denoted by the label of the contact. There is no limit to how many contacts per switch can 

be represented in a ladder diagram as each new contact (either normally-open or normally-

closed) on any switch or relay used in the diagram is marked with the same label. 

Occasionally multiple contacts on a single switch or relay are designated by a compound-label, 

such as “A-1” and “A-2” (instead of two “A” labels) in order to identify which set of contacts is 

being used for a particular part of the circuit. 

The output of any switch-generated logic function may be inverted by using a relay with a 

normally-closed contact. For example, energising a load based on the inverse, or NOT, of a 

normally-open contact, (see Fig. 7 below). 

 

When the coil of the control relay, CR1, is energised, the contact on the second rung opens 

hence de-energising the lamp. From switch A to the coil CR1, the function is non-inverted. The 

normally-closed contact, CR1/1, (actuated by CR1), provides a logical inverter function to drive 

the lamp opposite to that of the switch actuation status. 

Fig. 7 

Symbol 

A 

L1 L2 

A 1 

CR1/1 2 

CR1 

A  CR1  

Output 

0    0       1 

1    1       0 
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By applying this inversion strategy to one of the inverted-input functions, such as the OR-to-

NAND, the output can be inverted with a relay to create a non-inverted function, (see Fig. 8). 

 

From the switches to the coil CR1, the logical function is that of a NAND gate. The normally-

closed contact,CR1/1, provides one final inversion to turn the NAND function into an AND 

function. 

In summary : 

 parallel contacts are logically equivalent to an OR gate 

 series contacts are logically equivalent to an AND gate 

 normally-closed contacts (NC) are logically equivalent to a NOT gate 

 a relay must be used to invert the output of a logic gate function, whilst normally-

closed switch contacts are sufficient to represent inverted gate inputs 

 

L1 L2 

A 

B 

1 

Fig. 

8 

Symbol 

or 

A 
 

B 

A   B   

Output 

0   0       0 

0   1       0 

1   0       0 

1   1       1 

CR1/1 

CR

1 

2 

A 

B 
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Basic Logic Gates 

 

Negative Logic Gates 

 

Each of the basic gates has a negative logic equivalent as shown. The equivalence is shown by 

the application of DeMorgan's theorem. It amounts to changing AND's to OR's or vice versa 

and inverting all input and output lines compared to the implementation in gates shown at left. 
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DeMorgan's Theorem 

The most important logic theorem for digital electronics, this theorem says that any logical 

binary expression remains unchanged if we 

1. Change all variables to their complements.  

2. Change all AND operations to OR.  

3. Change all OR operations to AND.  

4. Take the complement of the entire expression.  

For example : 

 

 

 

 

 

A practical operational way to look at DeMorgan's Theorem is that the inversion bar of an 

expression may be broken at any point and the operation at that point replaced by its opposite 

(i.e., AND replaced by OR, or vice versa). 

DeMorgan's Theorem in Gates 

Two forms of DeMorgan's Theorem implemented with basic gates.  

 

A + B  =  A . B          &           A . B  =  A + B 

A . B . C  etc  =  A + B + C  etc      &      A + B + C  etc  =  A . B . C  etc 
 

A + B  =  A . B  =  A . B 

 
A . B . C  =  A + B + C  = A + B + C 

 
A . B  =  A . B  =  A + B 
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DeMorgan Applications 

DeMorgan's Theorem is useful in the implementation of the basic gate operations with 

alternative gates, particularly with NAND and NOR gates which are readily available in 

Integrated Circuit (IC) form.  

The NAND Gate 

The output is high when either of inputs A or B is high, or if neither is high. In other words, it 

is normally high, going low only if both A and B are high. 

 

The NAND gate and the NOR gate can be said to be universal gates since combinations of them 

can be used to accomplish any of the basic operations and can thus produce an inverter, an OR 

gate or an AND gate. The non-inverting gates do not have this versatility since they can't 

produce an invert. 

Making a NAND Gate 
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Integrated Circuit (IC) 7400 Quad NAND Gate 

 

NAND Gate Operations 

The NAND gate is called a universal gate because combinations of it can be used to accomplish 

all the basic functions. 

 

NAND Gate Application 

Suppose you want a high output when either A or B is high but C is low. The Boolean 

expression and straightforward gate version of this are : 
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But the same task can be accomplished with NAND gates only since NAND's are universal 

gates. Integrated circuits such as the 7400 make this practical.  

 

NOR Gate 

The output is high only when neither A nor B is high. That is, it is normally high but any kind of 

non-zero input will take it low.  

The NOR gate and the NAND gate can be said to be universal gates since combinations of them 

can be used to accomplish any of the basic operations and can thus produce an inverter, an OR 

gate or an AND gate. The non-inverting gates do not have this versatility since they can't 

produce an invert. 

 

NOR Gate Operations 

The NOR gate is called a universal gate because combinations of it can be used to accomplish 

all the basic functions. 
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Integrated Circuit (IC) 7402 Quad NOR Gate 

 

Exclusive OR Gate 

 
 

The output is high when either of inputs A or B is high, but not if both A and B are high. 

Logically, the exclusive OR (XOR) operation can be seen as either of the following operations : 

1.           A AND NOT B OR B AND NOT A  

   

2.       A OR B AND NOT A AND B 

which can be implemented by the gate arrangements shown. They can also be implemented 

using NAND gates only. 
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Exclusive OR with NAND 

The implementation of the exclusive OR (XOR) operation with just NAND gates illustrates the 

function of NANDs as universal gates.  

1.  (A AND NOT B OR B AND NOT A) 

2.  (A OR B AND NOT A AND B) 

 

 

Integrated Circuit (IC) 7486 Exclusive-OR 

This is an example of convenient packaging of XOR gates in integrated circuit form. 
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Exercise 

Study the diagram below and complete a truth table for all inputs / outputs 

 

 

 

 

 

 

 

 

 

 

A B C D E F 

0 0     

0 1     

1 0     

1 1     

 

 

A 

 

 
B 

C 

A 
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D 

C 

 

 
B 

E 
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Permissive and Interlock Systems 

A practical application of switch and relay logic may be found in process control systems where 

several conditions may have to be met before equipment can be operated. For example, in 

order for combustion furnaces to operate safely the burners have to be controlled. The control 

system requires “permissions” from several process switches, such as high and low fuel 

pressure, exhaust stack damper position, access door position etc. Each process condition is 

called a permissive and each permissive switch contact is connected in series so that if any one 

of them detects an unsafe condition, the circuit will be opened : 

 

If all conditions are met, CR1 will energise and the green indicator lamp will be lit. In real life 

the circuit would consist of numerous indicators and the permissive switches would control a 

main control relay or fuel valve solenoid. If any of the permissive conditions were not met, the 

series connected contacts will be broken, CR1 will de-energise and the red indicator will light. 

Note that the high-fuel pressure contact is normally-closed – this is because the contact opens 

when the fuel pressure is excessive (too high). The “normal” condition of any pressure switch 

is when zero (low) pressure is being applied to it hence this circuit uses a switch contact that is 

normally-closed and opens with high pressure. 

L1 L2 

A 

CR1/1 

CR1 

CR1/

2 
Red 

Gree

n 

low 

fuel 

pressur

e 

high 
fuel 

pressur

e 

minimu

m air 

flow 

dampe

r open 

Green light : conditions met – safe to start 

Red light : conditions not met – unsafe to start 

Fig. 9 
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Another practical application of relay logic is in electrical control systems where we want to 

ensure two incompatible events cannot occur at the same time. For example, in a reversible 

motor control two contactors are connected to switch the polarity of the motor however only 

one contactor can be energised at any one time, (see Fig. 10). 

 

When contactor M1 is energised, the 3 phases (A, B and C), are connected directly to the 

terminals 1, 2 and 3 of the motor. When contactor M2 is energised, phases A and B are 

reversed, A going to motor terminal 2 and B going to motor terminal 1. This reversal of phase 

connections results in the motors rotating in the opposite direction. The control for the two 

contactors is as follows (Fig. 11) 

 

* the normally-closed “OL” contact is the thermal overload contact operated by the overload 

“heater” elements connected in series with each phase of the AC motor. If the heaters get 

too hot the contact will change from its closed state to an open state which will then 

prevent either contactor from energising. 

To prevent both contactors energising at the same time the circuit is designed by connecting a 

normally-closed auxiliary contact from the opposing relay in series with the coil. For example, 

when relay M1 energises, its aux. contact (M1/1) opens hence preventing relay M2 from 

energising at the same time. This is known as interlocking. 

Fig. 

11 
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