
Calculation steps

(for pressured equipment and pipe work)

Convert line pressure to answer units (A)

Calculate static head pressure and convert to answer units (B)

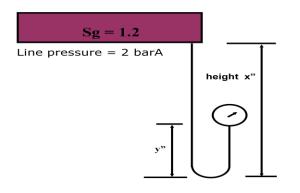
If gauge is below - ADD A & B to get answer

If gauge is above - Subtract B from A

Remember!

Static head pressure is ALWAYS in "wg

barA to bar SUBTRACT 1.013


psi to psiA ADD 14.7 psi

Static head pressure = $(x-y) \times Density$

UNIT	Kpa	Bar	mBar	In. wg	Psi
KPa	1	0.01	10	4.015	0.1450
Bar	100	1	1000	401.5	14.5
mBar	.1000	1 x 10 ⁻³	1	0.4015	0.0145
In. wg	0.2491	2.54x10 ⁻³	2.491	1	0.0361
Psi	6.895	0.0703	68.95	27.68	1

Calculation steps

(for pressured equipment and pipe work)

Convert line pressure to answer units (A)

Calculate static head pressure and convert to answer units (B)

If gauge is below - ADD A & B to get answer

If gauge is above - Subtract B from A

Remember!

Static head pressure is ALWAYS in "wg

barA to bar SUBTRACT 1.013

psi to psiA ADD 14.7 psi

Static head pressure = $(x-y) \times Density$

UNIT	Kpa	Bar	mBar	In. wg	Psi
KPa	1	0.01	10	4.015	0.1450
Bar	100	1	1000	401.5	14.5
mBar	.1000	1 x 10 ⁻³	1	0.4015	0.0145
In. wg	0.2491	2.54x10 ⁻³	2.491	1	0.0361
Psi	6.895	0.0703	68.95	27.68	1