Project Write-up Name:..... Group:...... Group:..... MODULE TITLE: Level Measurement MODULE No: I-6 PROJECT DESCRIPTION: Pneumerstats PROJECT No: L1 OBJECTIVE No: 5. PNEUMERSTAT - Capillary - Seating Spring - M. Air Outlet - N. Bubbler Chamber - Secondary Diaphragm Chamber - P. Main Spring - Q. Diaphragm - R. Primary Diaphragm Chamber - S. Valve - T. Upstrem Chamber - V. Drain valve - W. Air Filter - Y. Air Inlet # **Project Write-up** | Name: Group: |) | |--------------|---| |--------------|---| MODULE TITLE: Level Measurement MODULE No: L1 001 1 PROJECT DESCRIPTION: Dip Pipe Systems (Open Tank Installation) PROJECT No: L2 OBJECTIVE No's: 3, 4. | TTE Training Limited Phase 1/Module I–6 – Level Measurement Project | Level Project Sheets I-CN-016
Page 4 of 14 | |--|---| | PROJECT WRITE UP SHEET | | | Principle/Theory of Operation | How would the range of a pressure transmitted open tank be calculated? | er using a dip pipe in an | | | | | | | | How would a blocked dip pipe be cleared? | | | | | | | | # **Project Write-up** Name:..... Group:...... MODULE TITLE: Level Measurement MODULE No: L1 001 1 PROJECT DESCRIPTION: Dip Pipe Systems (Closed Tank Installation) PROJECT No: L3 OBJECTIVE No's: 3, 4. #### CLOSED TANK DIP PIPE SYSTEM HP Reading = Liquid head (H x D) + Pressure A LP Reading = Pressure A D/P therefore = Liquid head only. | TTE Training Limited Phase 1/Module I–6 – Level | Measurement Project | Level Project Sheets I-CN-016
Page 6 of 14 | |--|-----------------------|---| | PROJECT WRITE UP SHEET | Wiedsdreiment Troject | 1 450 0 01 1 1 | | | | | | Principle/Theory of Op | eration | How would the range closed tank be calculate | _ | er using a dip pipe in a | | | | | | Why would the purge g
being connected as show | _ | he D.P. cell instead of | | | | | # **Project Write-up** Name:..... Group:...... Group:..... MODULE TITLE: Level Measurement MODULE No: L1 001 1 PROJECT DESCRIPTION: Buoyancy Type Level Transmitter PROJECT No: L4 OBJECTIVE No's: 6. How can density be measured? # **Project Write-up** | Name: | Group: | |-------|--------| | | | MODULE TITLE: Level Measurement MODULE No: L1 001 1 PROJECT DESCRIPTION: Electrical Methods PROJECT No: L5 OBJECTIVE No's: #### PROJECT L5 - ELECTRICAL METHODS: Nucleonic / Radio Active Methods. Operation and typical applications. 2. Capacitance Method Operation and typical applications 4. Ultrasonic Method - Operation and typical applications Operation and typical applications 5. Thermal Method 6. Limpet Cell - Operation and typical applications # **Project Write-up** | MODULE TITLE: | Level Measurement | MODULE No: L1 001 1 | |----------------|---|------------------------| | LEVEL QUESTION | IS: | | | | npletion of these questions
ired for Module L1 001 1 | provide the additional | 1. Describe how you would use a dip stick or dip tape to measure level in a tank and list some of the safety precautions you would observe when carrying out this task. 2. With the aid of a diagram, briefly describe how you would use a sight glass to measure level. List any precautions you would take and state the main limitations associated with its use. | Operating
Principles | Direct
dipping | Column of
liquid | | Pressure
Operated | | Surface
Follower | Buoyancy | Pneumatic | Force
Balance | Electric | Weighing | |-------------------------|--|---|--|--|---|---|--|--|--|--|--| | Types of
Instrument | Dip
Stick | Sight Glass | Manometers
& Pressure
Gauges | Diaphragm | Capsules | Floats | Displacer | Purged Dip
pipe | Transmitters | Capacitor
System | Weighing
Machine | | Range | Laquid depth up
To 8 metres | 0.2 to 2
metres
depending
upon static
pressure and
temperature | Up to 10 Metres Depth of Liquid Depcoding On liquid Density | Up to 6 metres depending upon size and material of disphragm | Normally
used in tanks
up to 10
metres deep | Typical
range up to
10 metres
depth | Ranges up to
15 metres
depth | Typical range up to 10 metres using a manwater as an indicator | Ranges up to 20 metres depending upon pattern | Can be
designed
for ranges
up to 100
metres
depth | Up to a total weight of 50 tonnes depending on pattern | | Limitations | For use
In open
Vessels
Only | Reading
obtained
Local to
Vessel | Process liquid Must not react with indicating liquid | Limited to
detection rather
than measurement
of level | May require
correction for
temperature
changes | Are
affected by
turbulent
conditions | Displacer may have to be built in sections when head room is limited | Purge gas
must not
contaminate
process fluid | Clean dry air
supply is
required for
procumatic
patterns | Material
being
measured
must act as
a dielectric
medium | Weight must be transposed into units of level for a given density | | Typical
Applications | Liquid
Level
Measurement
only | Liquid Level Messurement On open Or sealed vessels | For use on
Open or sealed
vessels by using
DP methods
(Liquids Only) | Level of liquid or
solid
measurement | Measurement of liquid level on open vessels (Indicator may be kocated a short distance from vessel) | Liquid level on open or scaled vessels depending on pattern | Is used where the reading has to be transmitted (Liquids Only) | Often used on
multi vessel
installations
for economy | Applied where the reading has to be transmitted (Liquids Only) | Used for
remote
indication
(Liquids or
solids) | Often used
where
transfer of
liquids
solids is
involved | TTE Training Limited Phase 1/Module I-6 - Level Measurement Project Level Project Sheets I-CN-016 Page 13 of 14 LEVEL PROJECT Module I-6 – Level Measurement Project No: 1 # Calibrate open tank dip tube level transmitter Obtain transmitter range and check the calibration of the transmitter by applying minimum and maximum pressure values to the input. Note down the transmitter output readings. Calibrate the transmitter using the appropriate values and note down the readings at appropriate intervals. T.O. to check calibration # **EQUIPMENT** Pressure calibration device mA current measuring device Level Project Sheets I-CN-016 Page 14 of 14 LEVEL PROJECT Module I-6 Level Measurement Project No: 2 ### Calibrate Masoneilan level transmitter Obtain transmitter range and check the calibration of the transmitter by applying minimum and maximum pressure values to the input. Note down the transmitter output readings. Calibrate the transmitter using the appropriate values and note down the readings at appropriate intervals. T.O. to check calibration ## **EQUIPMENT** Pressure calibration device mA current measuring device