

Batteries

Batteries in the workplace?

Electrical Symbols

Primary or Secondary?

Acid or Alkaline?

Early Primary (Circa 1800)

Primary Cell / Dry Battery

Cells are linked in **series** to increase output **voltage** i.e., a <u>battery</u> of cells

Secondary Cells

Original Lead Acid cell

Lead Acid Battery Discharging (Electrolysis)

Discharging current (Conventional)

Discharge action of a Lead Acid battery

Lead Sulphate

Spongy Lead

Spongy Lead

Lead Acid Battery Charging

Lead Acid Battery under Charge

Typical Lead Acid Cell

Checking off charge state of a Car Lead Acid battery with a Multimeter (2V cells)

Charge %	Voltage
100%	12.6
75%	12.4
50%	12.2
25%	12.0

Checking off charge state of a Lead Acid battery with a Hydrometer

Alkaline Cells

Alkaline cell

Discharge of an Alkaline Battery

Cell voltage falls to Approx 0.8 Volts. SG Remains Stable

Nickel Hydrate

Iron Oxide

Charging a Alkaline Battery

Cell voltage rises to Approx 1.2 Volts SG Stable