

Variable Speed Drives (VSD's)

AC Induction motors (History)

Invented and developed in the early 19th century the Induction motor was manufactured with **fixed** speeds based on the number of poles or pairs of poles **PER PHASE**:

2 Pole Motor 1 Pair

 $N_s = R$

RPM

4 Pole Motor 2 Pairs

 $N_s =$

RPM

6 Pole Motor 3 Pairs

 $N_s =$

RPM

Synchronous Speed (N_s)

To calculate the synchronous speed of an Induction motor:

There are two formulae

$$N_s =$$

$$N_s =$$

Asynchronous Speed or Rotor Speed (N_r)

Sometimes referred to as the slip speed

And will often be stated as a percentage of synchronous speed: (so multiplied by 100)

So what is the rotor speed of a UK 6 pole motor with 5% Slip?

AC Motor Data Plate

What is the percentage slip of this Induction Motor?

Variable Speed Control of AC Motors

Before the onset of Semiconductors and Micro-electronics variable speed control of AC Induction motors was limited to mechanical solutions

Variable Speed Control of AC Motors

Variable Speed Control AC Motors

Electrical Speed Control

Variable speed (frequency) drives/inverters

Block Diagram

© TTE Training Ltd Controlled Document E2-CP-016a

Step 1

How do you change Single Phase AC to DC?

Single Phase AC to DC?

N -----

Step 1

How do you change Three Phase AC to DC?

Three Phase AC to DC?

L1 ———

+

L2 ———

L3 ———

Step 2

How do you smooth Rippled DC?

How do you change DC back into Single Phase AC?

Inverter circuit for single - phase output

Inverter circuit for single - phase output

Inverter circuit for single - phase output

 $\hbox{@ TTE Training Ltd}\\$

Step 3

How do you change DC into Three Phase AC?

Variable frequency 3 phase output to induction motor

AC Drive Main Circuit

Pulse Width Modulation (PWM)

Varying the frequency

Eurotherm 601 VSD

Example Variable Speed Control Timing diagram

Clockwise / Forward

Anti-Clockwise / Reverse

Parameter	Translation	Description	Range	Factory Default
P1	Minimum Speed	The minimum frequency at which the inverter will run	0 – 240 Hz	0 - Hz
P2	Maximum Speed	The maximum frequency at which the inverter will run	0 – 240 Hz	50 / 60 Hz
P3	Ramp Up Time	The time for the inverter output frequency to ramp up from zero to maximum speed	0.1 – 999s	10s
P4	Ramp Down Time	The time for the inverter output frequency to ramp up from maximum speed to zero	0.1 – 999s	10s
P11	Stopping Mode	Controlled stopping of motor	Ramp Coast Injection	Ramp

P1 0 – 240 Hz	P2 0 – 240 Hz	P3 0.1 – 999s	<i>P4</i> 0.1 – 999s	P11 Ramp = 0 Coast = 1
				Injection = 2
Minimum Speed	Maximum Speed	Ramp Up Time	Ramp Down Time	Stopping Mode
10	100	15	10	1
25	75	25	15	0
2	150	45	30	0

rdy

Display Value Level

Diagnostic values Display only

Title Level

P15

d1

d2

d3

P15

4 Function Keys

Current Parameter values are displayed

to increase / decrease

Parameter values