



# **EN39B CASE HARDENING STEEL**

EN39B is a 4 1/4% Nickel Chromium Molybdenum carburising steel, generally supplied annealed to HB 277 max. Carburised and heat treated it develops a hard wear resistant case of about Rc 6-63 and a tough strong core with a typical tensile strength range 1000-1400MPa, in small to quite large sections.

| Colour Code                 | Stocked Sizes |                         |  |  |  |  |
|-----------------------------|---------------|-------------------------|--|--|--|--|
| Green & Orange<br>(Bar End) | Rounds        | 50mm to 205 mm Diameter |  |  |  |  |
| Related Specifications      |               |                         |  |  |  |  |
| Australia                   |               | AS X9315 / EN39B        |  |  |  |  |
|                             |               |                         |  |  |  |  |

| Related Specifications |                      |  |
|------------------------|----------------------|--|
| Australia              | AS X9315 / EN39B     |  |
| Germany                | DIN: 15NiCrMo16-5    |  |
| Great Britain          | 835M15 or 835H15     |  |
| Japan                  | SNCM 815, JIS G 4103 |  |
| USA                    | EN: 39B              |  |

## **Chemical Composition**

|            | Min. % | Max. % |
|------------|--------|--------|
| Carbon     | 0.12   | 0.18   |
| Silicon    | 0.10   | 0.35   |
| Manganese  | 0.25   | 0.50   |
| Nickel     | 3.90   | 4.30   |
| Chromium   | 1.00   | 1.40   |
| Molybdenum | 0.15   | 0.3    |

Mechanical Test Requirements - If supplied to BS 970 - 1 - 1996 835M15

| Test Bar Diameter                      |               | 19mm     |  |  |
|----------------------------------------|---------------|----------|--|--|
| Tensile Strength Elongation on 5.65 So |               | 1310MPa  |  |  |
|                                        |               | 8%       |  |  |
|                                        | Impact - Izod | 34 J min |  |  |

Check test certificate if critical for end use.

## Typical Mechanical Properties - Quenched at 830°C and tempered at 200°C

| Section Size mm    | 25  | 50   | 100  |
|--------------------|-----|------|------|
| Tensile Strength   |     | 1300 | 1180 |
| Yield Strength Mpa |     | 1100 | 920  |
| Elongation %       |     | 15   | 17   |
| Impact Izod J      |     | 72   | 82   |
| Hardness HB        | 400 | 380  | 350  |

#### **Forging**

Heat to 1150°C and hold until uniform. Minimum forging temperature 900°C. Cool in ashes, warm dry lime or sand.Note: Soaking time at forging temperature should be as short as possible to avoid heavy scaling and excessive grain growth.

#### **Heat Treatment**

#### **Annealing**

Heat to 830°C - 850°C, hold until temperature is uniform throughout the section and cool in furnace.

#### **Normalising**

Heat to 900°C - 930°C, Cool in still air

Temper at 640°C - 660°C Cool in still air

For optimum machinability

## **Stress Relieving**

Heat to 600°C - 650°CCool in furnace to 450°C and air cool

#### Carburizing

Pack, salt or gas carburize at 900°C - 950°C, holding for sufficient time to develop the required case depth and carbon content, followed by a suitable hardening and tempering cycle to optimise case and core properties.

## **Refining & Hardening**

#### Core Refine

Slow cool from carburizing temperature and re-heat to 850°C - 880°C, hold until temperature is uniform throughout the section, quench as required in water, oil or air cool. Alternatively quench in salt bath held at 150°C - 250°C, followed by air cool.

#### Case Hardening

Following core refining, re-heat to 760°C - 800°C, hold until temperature is uniform throughout the section, and quench in oil.Temper immediately while still hand warm.

## Single Refine\*

**Direct Quench:** Cool from carburizing temperature to 810 °C - 830 °C, hold until temperature is uniform throughout the section. Quench as required in water, oil or air cool. Alternatively quench in salt bath held at 150 °C - 250 °C, followed by air cool and temper immediately.

**Or:** Cool from carburizing temperature to room temperature, re-heat to 810 °C - 830 °C and hold until temperature is uniform throughout the section and quench or air cool as previous. Temper immediately.

Note: When air cooling large sections a uniform fan cooling is recommended, especially when direct cooling from carburizing temperature.

\*Suitable for fine grained steels only.

### **Tempering**

Heat to 150°C - 200°C as required, hold until temperature is uniform throughout the section, soak for 1 - 2 hours per 25 mm of section, and cool in still air.N.B.Tempering will improve the toughness of both case and core, with only a slight reduction in core strength and case hardness. It will also reduce the susceptibility of the case to grinding cracks.

## Welding

EN39B is readily weldable in the annealed condition with correct procedure, but welding in the case hardened or through condition <u>is</u> not recommended.

## **Welding Procedure**

Low hydrogen electrodes recommended. Pre-heat at  $250^{\circ}\text{C}$  -  $350^{\circ}\text{C}$  and maintain during welding. Cool slowly in ashes, warm dry lime or sand etc, followed when possible with a stress relieve.

Interlloy believes the information provided is accurate and reliable. However no warranty of accuracy, completeness or reliability is given, nor will any responsibility be taken for errors or omissions.